# The orbital minimization method for electronic structure calculations with finite-range atomic basis sets

@article{Corsetti2014TheOM, title={The orbital minimization method for electronic structure calculations with finite-range atomic basis sets}, author={Fabiano Corsetti}, journal={Comput. Phys. Commun.}, year={2014}, volume={185}, pages={873-883} }

## Figures and Tables from this paper

## 19 Citations

HONPAS: A linear scaling open‐source solution for large system simulations

- Chemistry
- 2015

HONPAS is an ab initio electronic structure program for linear scaling or O(N) first-principles calculations of large and complex systems using standard norm-conserving pseudopotentials, numerical…

ELSI: A unified software interface for Kohn-Sham electronic structure solvers

- Computer ScienceComput. Phys. Commun.
- 2018

Massively Parallel Eigensolvers based on Unconstrained Energy Functionals Methods

- Computer Science
- 2019

A preconditioned conjugate gradient based iterative eigensolver using an unconstrained energy functional minimization scheme that avoids an explicit reorthogonalization of the trial eigenvectors and becomes an attractive alternative for the solution of very large problems.

Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS

- Computer ScienceFrontiers in Chemistry
- 2020

This work presents a parallel implementation of linear-scaling density matrix trace correcting (TC) purification algorithm to solve the Kohn–Sham equations with the numerical atomic orbitals in the HONPAS package and proposes to use the MPI_Allgather function for parallel programming to deal with the sparse matrix multiplication within the compressed sparse row (CSR) format.

Siesta: Recent developments and applications.

- Computer ScienceThe Journal of chemical physics
- 2020

The more recent implementations of Siesta are described, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functional, and enhanced molecular-dynamics options.

DFTB+, a software package for efficient approximate density functional theory based atomistic simulations.

- Computer ScienceThe Journal of chemical physics
- 2020

An overview of the recently developed capabilities of the DFTB+ code is given, demonstrating with a few use case examples, and the strengths and weaknesses of the various features are discussed, to discuss on-going developments and possible future perspectives.

SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package

- Computer ScienceJ. Comput. Chem.
- 2018

Integration of Shift‐and‐Invert Parallel Spectral Transformation (SIPs) eigensolver into an ab initio molecular dynamics package, SIESTA, and a method that improves the load‐balance with each iteration in the self‐consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated.

Performance Analysis of Electronic Structure Codes on HPC Systems: A Case Study of SIESTA

- Computer SciencePloS one
- 2014

A systematic strategy for simultaneously testing weak and strong scaling, and a measure which is independent of the range of number of cores on which the tests are performed to quantify strong scaling efficiency as a function of simulation size are proposed.

Preconditioning Orbital Minimization Method for Planewave Discretization

- PhysicsMultiscale Model. Simul.
- 2017

Numerical results validate the performance of the new preconditioner for the orbital minimization method, in particular, the iteration number is reduced to $\mathcal{O}(1)$ and often only a few iterations are enough for convergence.

## References

SHOWING 1-10 OF 60 REFERENCES

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

- Chemistry
- 1996

Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling.

- PhysicsPhysical review. B, Condensed matter
- 1994

The method leads to an algorithm whose computational cost scales linearly with the system size and establishes the accuracy and reliability of the method for a wide class of systems and shows that tight-binding molecular-dynamics simulations with a few thousand atoms are feasible on small workstations.

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

- ChemistryPhysical review. B, Condensed matter
- 1996

An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.

The SIESTA method for ab initio order-N materials simulation

- Physics
- 2001

We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set,…

Augmented orbital minimization method for linear scaling electronic structure calculations

- Computer Science

A novel algorithm is presented which can overcome the drawbacks of the conventional linear scaling method with minimal computational overhead by introducing additional constraints, thus eliminating the redundancy of the orbitals.

Linear system-size scaling methods for electronic-structure calculations.

- PhysicsPhysical review. B, Condensed matter
- 1995

A method for performing electronic-structure calculations of the total energy and interatomic forces which scales linearly with system size is described and a spatially truncated Wannier-like representation for the electronic states is obtained.

Preconditioned iterative minimization for linear-scaling electronic structure calculations

- Computer Science
- 2003

This work presents a general preconditioning scheme to overcome an ill-conditioning related to the kinetic contribution to the total energy and which results in unacceptably slow convergence in linear-scaling density functional theory methods.

Self-interaction correction to density-functional approximations for many-electron systems

- Physics
- 1981

exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any density functional for the energy; correction of the self-consistent one-electron…

Absolute-energy-minimum principles for linear-scaling electronic-structure calculations

- Chemistry
- 1997

Two absolute energy minimum principles are developed for first-principle linear-scaling electronic structure calculations. One is with a normalization constraint and the other without any constraint.…

Ab initio molecular simulations with numeric atom-centered orbitals

- Computer ScienceComput. Phys. Commun.
- 2009