The non-enzymatic hydrolysis of oligoribonucleotides VI. The role of biogenic polyamines.

Abstract

Single-stranded oligoribonucleotides containing UA and CA phosphodiester bonds can be hydrolyzed specifically under non-enzymatic conditions in the presence of spermidine, a biogenic amine found in a wide variety of organisms. In the present study, the rate of oligonucleotide and tRNA(i)(Met)hydrolysis was measured in the presence of spermidine and other biogenic amines. It was found that spermine [H(3)N(+)(CH(2))(3)(+)NH(2)(CH(2))(4)(+)NH(2)(CH(2))(3)(+)NH(3)] and putrescine [H(3)N(+)(CH(2))(4)(+)NH(3)] can replace spermidine [H(3)N(+)-(CH(2))(4)(+)NH(2)(CH(2))(3)(+)NH(3)] to induce the hydrolysis. For all three polyamines, a bell-shaped cleavage rate versus concentration relationship was observed. The maximum rate of hydrolysis was achieved at 0.1, 1.0 and 10 mM spermine, spermidine and putrescine, respectively. Moreover, we found that the hydrolysis requires at least two linked amino groups since two aminoalcohols, 2-aminoethanol and 3-aminopropanol, were not able to induce the cleavage of the phospho-diester bond. The optimal cleavage rate of the oligo-ribonucleotides was observed when amino groups were separated by tri- or tetramethylene linkers. The methylation of the amino groups reduced the ability of diamines to induce oligoribonucleotide hydrolysis. Non-enzymatic cleavage of tRNA(i)(Met)from Lupinus luteus and tRNA(i)(Met)from Escherichia coli demonstrate that both RNAs hydrolyze as expected from principles derived from oligoribonucleotide models.

7 Figures and Tables

Cite this paper

@article{Bibillo1999TheNH, title={The non-enzymatic hydrolysis of oligoribonucleotides VI. The role of biogenic polyamines.}, author={Arkadiusz Bibillo and Marek Figlerowicz and Ryszard Kierzek}, journal={Nucleic acids research}, year={1999}, volume={27 19}, pages={3931-7} }