• Corpus ID: 232092186

The natural extension of the Gauss map and Hermite best approximations

  title={The natural extension of the Gauss map and Hermite best approximations},
  author={N. Chevallier},
Hermite best approximation vectors of a real number θ were introduced by Lagarias. A nonzero vector (p, q) ∈ Z × N is a Hermite best approximation vector of θ if there exists ∆ > 0 such that (p − qθ) + q/∆ ≤ (a − bθ) + b/∆ for all nonzero (a, b) ∈ Z. Hermite observed that if q > 0 then the fraction p/q must be a convergent of the continued fraction expansion of θ and Lagarias pointed out that some convergents are not associated with a Hermite best approximation vectors. In this note we show… 


Ergodic Theory Of Fibred Systems And Metric Number Theory
Cutting Sequences fo Geodesic flow on the Modular Surface and Continued Fractions Monatshefte fûr Mathematik 133
  • 2001
Geodesic Multidimensional Continued Fractions
Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles
— We give a procedure to compute invariant measures for some multi-dimensional continued fractions algorithms; we use this procedure to build in an elementary way the usual Gauss measure for the map
Exact endomorphisms of a Lebesgue space
Sur le développement en fraction continue d'un nombre choisi au hasard
© Foundation Compositio Mathematica, 1936, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions
Über eine Verallgemeinerung des Kettenbruchalgorithmus
  • Dissertation, Warsaw
  • 1896
Sur différents objets de la théorie des nombres (French)
  • J. Reine Angew. Math. 40
  • 1850