The monotone circuit complexity of Boolean functions

Abstract

Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size .Q(m-'/(log m) ~') for fixed s, and size rn ao°~') for ,. :[log ml4J. In this paper we modify the arguments of Razborov to… (More)
DOI: 10.1007/BF02579196

Topics

Cite this paper

@article{Alon1987TheMC, title={The monotone circuit complexity of Boolean functions}, author={Noga Alon and Ravi B. Boppana}, journal={Combinatorica}, year={1987}, volume={7}, pages={1-22} }