The monotone circuit complexity of Boolean functions


Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size .Q(m-'/(log m) ~') for fixed s, and size rn ao°~') for ,. :[log ml4J. In this paper we modify the arguments of Razborov to… (More)
DOI: 10.1007/BF02579196


Cite this paper

@article{Alon1987TheMC, title={The monotone circuit complexity of Boolean functions}, author={Noga Alon and Ravi B. Boppana}, journal={Combinatorica}, year={1987}, volume={7}, pages={1-22} }