# The method of alternating projections and the method of subspace corrections in Hilbert space

@article{Xu2002TheMO, title={The method of alternating projections and the method of subspace corrections in Hilbert space}, author={Jinchao Xu and Ludmil T. Zikatanov}, journal={Journal of the American Mathematical Society}, year={2002}, volume={15}, pages={573-597} }

The method of alternating projections and the method of subspace corrections are general iterative methods that have a variety of applications. The method of alternating projections, first proposed by von Neumann (1933) (see [31]), is an algorithm for finding the best approximation to any given point in a Hilbert space from the intersection of a finite number of subspaces. The method of subspace corrections, an abstraction of general linear iterative methods such as multigrid and domain…

## 254 Citations

New Estimates for the Rate of Convergence of the Method of Subspace Corrections

- Computer Science, Mathematics
- 2008

A formula for the convergence rate is obtained which can be employed to derive many other estimates related to the method of subspace corrections and how the convergence rates of the MSSC and MPSC can be estimated in terms of each other.

Global convergence rate of a standard multigrid method for variational inequalities

- Computer Science, Mathematics
- 2014

A multigrid algorithm for variational inequalities whose constraints are of the two-obstacle type and the method is introduced as a subspace correction algorithm in a reflexive Banach space, proving its global convergence and estimating the error making some assumptions.

Greedy and Randomized Versions of the Multiplicative Schwarz Method

- Mathematics, Computer Science
- 2012

Subspace Correction Methods for Total Variation and 1-Minimization

- Computer Science, MathematicsSIAM J. Numer. Anal.
- 2009

Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on $\ell_1$-minimization.

SUBSPACE CORRECTION METHODS FOR TOTAL VARIATION AND l 1 − MINIMIZATION MASSIMO

- Computer Science, Mathematics
- 2009

This paper focuses on the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a semi-norm for a subspace and includes numerical examples which show efficient solutions to classical problems in signal and image processing.

ROBUST SUBSPACE CORRECTION METHODS FOR NEARLY SINGULAR SYSTEMS

- Computer Science, Mathematics
- 2007

Convergence results for general (successive) subspace correction methods for solving nearly singular systems of equations are discussed and parameter independent estimates under appropriate assumptions on the subspace solvers and space decompositions are provided.

A sharp convergence estimate for the method of subspace corrections for singular systems of equations

- MathematicsMath. Comput.
- 2008

A convergence rate identity is obtained for the method of subspace corrections in terms of the subspace solvers and the new abstract theory is used to show uniform convergence of a multigrid method applied to the solution of the Laplace equation with pure Neumann boundary conditions.

Alternating Least Squares as Moving Subspace Correction

- MathematicsSIAM J. Numer. Anal.
- 2018

This work is able to provide an alternative and conceptually simple derivation of the asymptotic convergence rate of the two-sided block power method of numerical algebra for computing the dominant singular subspaces of a rectangular matrix.

CONVERGENCE ANALYSIS ON ITERATIVE METHODS FOR SEMIDEFINITE SYSTEMS

- Mathematics
- 2008

The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sufficient…

Parallel subspace correction methods for nearly singular systems

- Computer Science, MathematicsJ. Comput. Appl. Math.
- 2014

## References

SHOWING 1-10 OF 64 REFERENCES

Accelerating the convergence of the method of alternating projections

- Mathematics, Computer Science
- 2003

The powerful von Neumann-Halperin method of alternating projections (MAP) is an algorithm for determining the best approximation to any given point in a Hilbert space from the intersection of a…

Iterative Methods by Space Decomposition and Subspace Correction

- Computer ScienceSIAM Rev.
- 1992

A unified theory for a diverse group of iterative algorithms, such as Jacobi and Gauss–Seidel iterations, diagonal preconditioning, domain decomposition methods, multigrid methods,Multilevel nodal basis preconditionsers and hierarchical basis methods, is presented by using the notions of space decomposition and subspace correction.

On the abstract theory of additive and multiplicative
Schwarz algorithms

- Computer Science
- 1995

A modification of the abstract convergence theory of the additive and multiplicative Schwarz methods that makes the relation to traditional iteration methods more explicit, making convergence proofs of multilevel and domain decomposition methods clearer, or, at least, more classical.

Error bounds for the method of alternating projections

- MathematicsMath. Control. Signals Syst.
- 1988

The method of alternating projections produces a sequence which converges to the orthogonal projection onto the intersection of the subspaces, and the sharpest known upper bound for more than two subspaced is obtained.

Convergence estimates for product iterative methods with applications to domain decomposition

- Mathematics, Computer Science
- 1991

In this paper, we consider iterative methods for the solution of symmetric positive definite problems on a space % which are defined in terms of products of operators defined with respect to a number…

New convergence estimates for multigrid algorithms

- Computer Science
- 1987

New convergence estimates are proved for both symmetric and nonsymmetric multigrid algorithms applied to symmetric positive definite problems and a generalized ..nu.. cycle algorithm which involves exponentially increasing the number of smoothings on successively coarser grids is defined.

Iterative Solution of Large Sparse Systems of Equations

- Computer Science
- 1993

In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods…

Some Nonoverlapping Domain Decomposition Methods

- MathematicsSIAM Rev.
- 1998

A unified investigation of a class of nonoverlapping domain decomposition methods for solving second-order elliptic problems in two and three dimensions and several new variants of the algorithms are derived.

Multilevel additive methods for elliptic finite element problems in three dimensions

- Computer Science
- 1991

A general framework is developed, which is useful in the design and analysis of a variety of domain decomposition methods as well as certain multigrid methods, and works with nite element approximations of linear, self-adjoint, elliptic problems.