The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR.

Abstract

Functional chimeric TCR chains, encoded by V gamma J gamma C beta or V gamma J beta C beta hybrid gene TCR, are expressed at the surface of a small fraction of alpha beta T lymphocytes in healthy individuals. Their frequency is dramatically increased in patients with ataxia-telangiectasia, a syndrome associated with inherited genomic instability. As the TCR gamma and beta loci are in an inverted orientation on chromosome 7, the generation of such hybrid genes requires at least an inversion event. Until now, neither the sequences involved in this genetic mechanism nor the number of recombinations leading to the formation of functional transcriptional units have been characterized. In this manuscript, we demonstrate that at least two rearrangements, involving classical recombination signal sequence and the V(D)J recombinase complex, lead to the formation of productive hybrid genes. A primary inversion 7 event between D beta and J gamma genic segments generates C gamma V beta and C beta V gamma hybrid loci. Within the C gamma V beta locus, secondary rearrangements between V gamma and J gamma or V gamma and J beta elements generate functional genes. Besides, our results suggest that secondary rearrangements were blocked in the C beta V gamma locus of normal but not ataxia-telangiectasia T lymphocytes. We also provide formal evidence that the same D beta-3' recombination signal sequence can be used in successive rearrangements with J gamma and J beta genic segments, thus showing that a signal joint has been involved in a secondary recombination event.

Cite this paper

@article{Retire1999TheMO, title={The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR.}, author={Christelle Reti{\`e}re and Frank Halary and Marie Alix Peyrat and Françoise le Deist and Marc Bonneville and M M Hallet}, journal={Journal of immunology}, year={1999}, volume={162 2}, pages={903-10} }