# The localization theorem for framed motivic spaces

@article{Hoyois2021TheLT, title={The localization theorem for framed motivic spaces}, author={Marc Hoyois}, journal={Compositio Mathematica}, year={2021}, volume={157}, pages={1 - 11} }

We prove the analog of the Morel–Voevodsky localization theorem for framed motivic spaces. We deduce that framed motivic spectra are equivalent to motivic spectra over arbitrary schemes, and we give a new construction of the motivic cohomology of arbitrary schemes.

## 24 Citations

### Cancellation theorem for motivic spaces with finite flat transfers

- Mathematics
- 2020

We show that the category of motivic spaces with transfers along finite flat morphisms, over a perfect field, satisfies all the properties we have come to expect of good categories of motives. In…

### Motivic stable homotopy theory is strictly commutative at the characteristic

- MathematicsAdvances in Mathematics
- 2022

### Voevodsky's slice conjectures via Hilbert schemes.

- Mathematics
- 2019

Using recent development in motivic infinite loop space theory, we offer short and conceptual reproofs of some conjectures of Voevodsky's on the slice filtration using the birational geometry of…

### Introduction to Framed Correspondences

- Mathematics
- 2022

We give an overview of the theory of framed correspondences in motivic homotopy theory. Motivic spaces with framed transfers are the analogue in motivic homotopy theory of E ∞ -spaces in classical…

### Stable motivic invariants are eventually étale local

- Mathematics
- 2020

In this paper we prove a Thomason-style descent theorem for the $\rho$-complete sphere spectrum. In particular, we deduce a very general etale descent result for torsion, $\rho$-complete motivic…

### Hermitian K-theory via oriented Gorenstein algebras

- Mathematics
- 2021

We show that hermitian K-theory is universal among generalized motivic cohomology theories with transfers along finite Gorenstein morphisms with trivialized dualizing sheaf. As an application, we…

### On the p-adic weight-monodromy conjecture for complete intersetions in toric varieties

- Mathematics
- 2022

A BSTRACT . We give a proof of the p -adic weight monodromy conjecture for scheme-theoretic complete intersections in projective smooth toric varieties. The strategy is based on Scholze’s proof in…

### Generalized cohomology theories for algebraic stacks

- Mathematics
- 2021

We extend the stable motivic homotopy category of Voevodsky to the class of scalloped algebraic stacks, and show that it admits the formalism of Grothendieck’s six operations. Objects in this…

### Notes on motivic infinite loop space theory

- Mathematics
- 2019

In fall of 2019, the Thursday Seminar at Harvard University studied motivic infinite loop space theory. As part of this, the authors gave a series of talks outlining the main theorems of the theory,…

### On \'etale motivic spectra and Voevodsky's convergence conjecture

- Mathematics
- 2020

We prove a new convergence result for the slice spectral sequence, following work by Levine and Voevodsky. This verifies a derived variant of Voevodsky’s conjecture on convergence of the slice…

## References

SHOWING 1-10 OF 16 REFERENCES

### Motivic infinite loop spaces

- MathematicsCambridge Journal of Mathematics
- 2021

We prove a recognition principle for motivic infinite P1-loop spaces over an infinite perfect field. This is achieved by developing a theory of framed motivic spaces, which is a motivic analogue of…

### TECHNIQUES OF LOCALIZATION IN THE THEORY OF ALGEBRAIC CYCLES

- Mathematics
- 1999

We extend the localization techniques of Bloch to simplicial spaces. As applications, we give an extension of Bloch’s localization theorem for the higher Chow groups to schemes of finite type over a…

### Fundamental classes in motivic homotopy theory

- Mathematics
- 2019

We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of…

### A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula

- Mathematics
- 2013

We prove a trace formula in stable motivic homotopy theory over a general base scheme, equating the trace of an endomorphism of a smooth proper scheme with the "Euler characteristic integral" of a…

### La réalisation étale et les opérations de Grothendieck

- Mathematics
- 2014

In this article, we construct etale realization functors defined on the categories DAet(X, Λ) of etale motives (without transfers) over a scheme X. Our construction is natural and relies on a…

### A commutative P^1-spectrum representing motivic cohomology over Dedekind domains

- Mathematics
- 2012

We construct a motivic Eilenberg-MacLane spectrum with a highly structured multiplication over smooth schemes over Dedekind domains which represents Levine's motivic cohomology. The latter is defined…

### Triangulated Categories of Mixed Motives

- MathematicsSpringer Monographs in Mathematics
- 2019

This book discusses the construction of triangulated categories of mixed motives over a noetherian scheme of finite dimension, extending Voevodsky's definition of motives over a field. In particular,…

### Norms in motivic homotopy theory

- MathematicsAstérisque
- 2021

If $f : S' \to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal "norm" functor $f_\otimes : \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where…

### A1-homotopy theory of schemes

- Mathematics
- 1999

© Publications mathématiques de l’I.H.É.S., 1999, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://…

### Higher Algebra

- EducationNature
- 1937

AbstractTHIS new “Higher Algebra” will be examined with great interest by all teachers and serious students of mathematics. A book of this type is certainly needed at the present time, and the one…