The life, work, and legacy of P. L. Chebyshev

@article{Bingham2021TheLW,
  title={The life, work, and legacy of P. L. Chebyshev},
  author={N. H. Bingham},
  journal={Teoriya Veroyatnostei i ee Primeneniya},
  year={2021}
}
  • N. Bingham
  • Published 23 November 2021
  • Mathematics
  • Teoriya Veroyatnostei i ee Primeneniya
Дается краткое описание жизни и творчества П. Л. Чебышeва и его далеко идущего влияния. Обсуждается вклад П. Л. Чебышeва в теорию вероятностей, теорию чисел и механику, рассказывается о его учениках и последователях в математике, а также о его роли как отца-основателя русской математики в целом и русской школы теории вероятностей в частности. 
2 Citations

Prediction theory for stationary functional time series

We survey aspects of prediction theory in infinitely many dimensions, with a view to the theory and applications of functional time series.

Tauberian Korevaar

References

SHOWING 1-10 OF 82 REFERENCES

P. L. Chebyshev (1821-1894)

The aim of this paper is to outline the life and work of Chebyshev, creator in St. Petersburg of the largest prerevolutionary school of mathematics in Russia, who permitted himself to be equated only

Chebyshev's lectures on the theory of probability

L'A. rapporte la theorie et les lois de probabilites de Chebyshev (P.L.) pour les grands nombres et les distributions polynomiales

Products of Random Matrices with Applications to Schrödinger Operators

A: "Limit Theorems for Products of Random Matrices".- I - The Upper Lyapunov Exponent.- 1. Notation.- 2. The upper Lyapunov exponent.- 3. Cocycles.- 4. The theorem of Furstenberg and Kesten.- 5.

The differential equations of birth-and-death processes, and the Stieltjes moment problem

Pi,i+i(t) = Xit + o(t), Pi,i(t) = 1 (Xi + ,Yi)t + 0(t), Pi,i_i(t) = pit + o(t), as t->O, where Xi, pui are constants which may be thought of as the rates of absorption from state i into states i+1,

The Laplace Transform

THE theory of Fourier integrals arises out of the elegant pair of reciprocal formulæThe Laplace TransformBy David Vernon Widder. (Princeton Mathematical Series.) Pp. x + 406. (Princeton: Princeton

The Correspondence between A.A. Markov and A.A. Chuprov on the theory of Probability and Mathematical statistics

The Correspondence Between A. A. Markov and A. A. Chuprov.- A Review of the Correspondence Between A. A. Markov and A. A. Chuprov.- Appendices: A. A. Markov and A. A. Chuprov on the Law of Large

Orthogonal Polynomials and Continued Fractions: From Euler's Point of View

Preface 1. Continued fractions: real numbers 2. Continued fractions: Algebra 3. Continued fractions: Analysis 4. Continued fractions: Euler 5. Continued fractions: Euler's Influence 6. P-fractions 7.

The Integration of Functions of a Single Variable

Now that function-theory is fairly well developed, it is much easier than it used to be to discuss in an orderly way the elementary problems of explicit integration. By showing how this can be done,

Lebesgue's theory of integration: Its origins and development

Riemann's theory of integration The development of riemann's ideas: 1870-80 Set theory and the theory of integration The end of the century: A period of transition The creation of modern integration
...