The integral monodromy of hyperelliptic and trielliptic curves

@inproceedings{Achter2006TheIM,
  title={The integral monodromy of hyperelliptic and trielliptic curves},
  author={Jeffrey D Achter and Rachel J. Pries},
  year={2006}
}
We compute the Z/l and Zl monodromy of every irreducible component of the moduli spaces of hyperelliptic and trielliptic curves. In particular, we provide a proof that the Z/l monodromy of the moduli space of hyperelliptic curves of genus g is the symplectic group Sp2g(Z/l). We prove that the Z/l monodromy of the moduli space of trielliptic curves with signature (r, s) is the special unitary group SU(r,s)(Z/l⊗Z[ζ3]). MSC 11G18, 14D05, 14H40 keywords monodromy, hyperelliptic, trigonal, moduli… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 27 references

Relèvement des formes modulaires de Picard

J. Bellaïche
J. London Math. Soc., 74(1):13–25 • 2006
View 1 Excerpt

The large sieve

E. Kowalski
monodromy and zeta functions of curves • 2005
View 1 Excerpt

A note on the existence of absolutely simple Jacobians

C.-L. Chai, F. Oort
J. Pure Appl. Algebra, 155(2-3):115–120 • 2001
View 1 Excerpt

Champs algébriques

G. Laumon, L. Moret-Bailly
volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin • 2000