The infinitesimal 16th Hilbert problem in dimension zero

Abstract

We study the analogue of the infinitesimal 16th Hilbert problem in dimension zero. Lower and upper bounds for the number of the zeros of the corresponding Abelian integrals (which are algebraic functions) are found. We study the relation between the vanishing of an Abelian integral I(t) defined over Q and its arithmetic properties. Finally, we give… (More)

Figures and Tables

Sorry, we couldn't extract any figures or tables for this paper.