# The index of a threefold canonical singularity

@article{Kawakita2012TheIO, title={The index of a threefold canonical singularity}, author={Masayuki Kawakita}, journal={American Journal of Mathematics}, year={2012}, volume={137}, pages={271 - 280} }

<abstract abstract-type="TeX"><p>The index of a 3-fold canonical singularity at a crepant centre is at most 6.

## 4 Citations

Log-canonical degenerations of del Pezzo surfaces in Q-Gorenstein families

- MathematicsKyoto Journal of Mathematics
- 2019

We classify del Pezzo surfaces of Picard number one with log canonical singularities admitting Q-Gorenstein smoothings.

Boundedness of $(\epsilon, n)$-Complements for Surfaces

- Mathematics
- 2020

We show the existence of $(\epsilon,n)$-complements for $(\epsilon,\mathbb{R})$-complementary surface pairs when the coefficients of boundaries belong to a DCC set.

Effective results in the three-dimensional minimal model program

- Mathematics
- 2021

We give a brief review on recent developments in the three-dimensional minimal model program. In this note we give a brief review on recent developments in the three-dimensional minimal model program…

## References

SHOWING 1-10 OF 18 REFERENCES

Divisorial contractions in dimension three which contract divisors to smooth points

- Mathematics
- 2001

Abstract.We deal with a divisorial contraction in dimension three which contracts its exceptional divisor to a smooth point. We prove that any such contraction can be obtained by a suitable weighted…

The indices of log canonical singularities

- Mathematics
- 1999

<abstract abstract-type="TeX"><p>Let (<i>P</i> ∈ <i>X</i>, Δ) be a three-dimensional log canonical pair such that Δ has only standard coefficients and that <i>P</i> is a center of log canonical…

Three-fold divisorial contractions to singularities of higher indices

- Mathematics
- 2003

We complete the explicit study of a three-fold divisorial contraction whose exceptional divisor contracts to a point, by treating the case where the point downstairs is a singularity of index $n \ge…

Minimal Discrepancy for a Terminal cDV Singularity Is 1

- Mathematics
- 1996

An answer to a question raised by Shokurov on the minimal discrepancy of a terminal singularity of index 1 is given. It is proved that the minimal discrepancy is 1 (it is 2 for a non-singular point…

Canonical quotient singularities in dimension three

- Mathematics
- 1985

We classify isolated canonical cyclic quotient singularities in dimension three, showing that, with two exceptions, they are all either Gorenstein or terminal. The proof uses the solution of a…

Young person''s guide to canonical singularities

- Business
- 1985

A copier of the type which includes a photoreceptor on which an electrostatic latent image may be formed, a movable applicator which carries developer from a working supply of image developer and…