# The hard edge tacnode process and the hard edge Pearcey process with non-intersecting squared Bessel paths

@inproceedings{Delvaux2014TheHE, title={The hard edge tacnode process and the hard edge Pearcey process with non-intersecting squared Bessel paths}, author={Steven Delvaux and B'alint VetHo}, year={2014} }

A system of non-intersecting squared Bessel processes is considered which all start from one point and they all return to another point. Under the scaling of the starting and ending points when the macroscopic boundary of the paths touches the hard edge, a limiting critical process is described in the neighborhood of the touching point which we call the hard edge tacnode process. We derive its correlation kernel in an explicit new form which involves Airy type functions and operators that act…

## 8 Citations

### Hard-edge asymptotics of the Jacobi growth process

- MathematicsAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
- 2020

We introduce a two parameter ($\alpha, \beta>-1$) family of interacting particle systems with determinantal correlation kernels expressible in terms of Jacobi polynomials $\{ P^{(\alpha, \beta)}_k…

### Gap probability for the hard edge Pearcey process

- Mathematics
- 2022

The hard edge Pearcey process is universal in random matrix theory and many other stochastic models. This paper deals with the gap probability for the thinned/unthinned hard edge Pearcey process over…

### The hard-edge tacnode process for Brownian motion

- Mathematics
- 2016

We consider $N$ non-intersecting Brownian bridges conditioned to stay below a fixed threshold. We consider a scaling limit where the limit shape is tangential to the threshold. In the large $N$…

### Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition

- Mathematics
- 2015

The singular values squared of the random matrix product $${Y = {G_{r} G_{r-1}} \ldots G_{1} (G_{0} + A)}$$Y=GrGr-1…G1(G0+A), where each $${G_{j}}$$Gj is a rectangular standard complex Gaussian…

### Asymptotics of the hard edge Pearcey determinant

- Mathematics
- 2022

We study the Fredholm determinant of an integral operator associated to the hard edge Pearcey kernel. This determinant appears in a variety of random matrix and non-intersecting paths models. By…

### Fluctuations of the arctic curve in the tilings of the Aztec diamond on restricted domains

- MathematicsThe Annals of Applied Probability
- 2021

We consider uniform random domino tilings of the restricted Aztec diamond which is obtained by cutting off an upper triangular part of the Aztec diamond by a horizontal line. The restriction line…

### Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition

- Materials ScienceCommunications in Mathematical Physics
- 2015

The singular values squared of the random matrix product Y=GrGr-1…G1(G0+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb}…

## References

SHOWING 1-10 OF 22 REFERENCES

### Non-Intersecting Squared Bessel Paths at a Hard-Edge Tacnode

- Mathematics
- 2013

The squared Bessel process is a 1-dimensional diffusion process related to the squared norm of a higher dimensional Brownian motion. We study a model of n non-intersecting squared Bessel paths, with…

### Non-Intersecting Squared Bessel Paths: Critical Time and Double Scaling Limit

- Mathematics
- 2011

AbstractWe consider the double scaling limit for a model of n non-intersecting squared Bessel processes in the confluent case:
all paths start at time t = 0 at the same positive value x = a, remain…

### Noncolliding Squared Bessel Processes

- Mathematics
- 2011

We consider a particle system of the squared Bessel processes with index ν>−1 conditioned never to collide with each other, in which if −1<ν<0 the origin is assumed to be reflecting. When the number…

### Gap Probabilities for the Generalized Bessel Process: A Riemann-Hilbert Approach

- Mathematics
- 2014

We consider the gap probability for the Generalized Bessel process in the single-time and multi-time case, a determinantal process which arises as critical limiting kernel in the study of…

### The Pearcey Process

- Mathematics
- 2006

The extended Airy kernel describes the space-time correlation functions for the Airy process, which is the limiting process for a polynuclear growth model. The Airy functions themselves are given by…

### Critical behavior of nonintersecting Brownian motions at a tacnode

- Mathematics
- 2010

We study a model of n one‐dimensional, nonintersecting Brownian motions with two prescribed starting points at time t = 0 and two prescribed ending points at time t = 1 in a critical regime where the…

### The tacnode kernel: equality of Riemann-Hilbert and Airy resolvent formulas

- Mathematics
- 2012

We study nonintersecting Brownian motions with two prescribed starting and ending positions, in the neighborhood of a tacnode in the time-space plane. Several expressions have been obtained in the…

### Non-colliding Brownian bridges and the asymmetric tacnode process

- Mathematics
- 2012

We consider non-colliding Brownian bridges starting from two points and returning to the same position. These positions are chosen such that, in the limit of large number of bridges, the two families…

### Nonintersecting random walks in the neighborhood of a symmetric tacnode

- Mathematics
- 2013

Consider a continuous time random walk in Z with independent and exponentially distributed jumps ±1. The model in this paper consists in an infinite number of such random walks starting from the…