# The graded structure of Leavitt path algebras

@article{Hazrat2010TheGS, title={The graded structure of Leavitt path algebras}, author={Roozbeh Hazrat}, journal={Israel Journal of Mathematics}, year={2010}, volume={195}, pages={833-895} }

A Leavitt path algebra associates to a directed graph a ℤ-graded algebra and in its simplest form it recovers the Leavitt algebra L(1, k). In this note, we first study this ℤ-grading and characterize the (ℤ-graded) structure of Leavitt path algebras, associated to finite acyclic graphs, Cn-comet, multi-headed graphs and a mixture of these graphs (i.e., polycephaly graphs). The last two types are examples of graphs whose Leavitt path algebras are strongly graded. We give a criterion when a… Expand

#### Figures from this paper

#### 56 Citations

Induced quotient group gradings of epsilon-strongly graded rings

- Mathematics
- 2018

Let $G$ be a group and let $S=\bigoplus_{g \in G} S_g$ be a $G$-graded ring. Given a normal subgroup $N$ of $G$, there is a naturally induced $G/N$-grading of $S$. It is well-known that if $S$ is… Expand

Epsilon-strongly graded Leavitt path algebras

- Mathematics
- 2017

Given a directed graph $E$ and a unital ring $R$ one can define the Leavitt path algebra with coefficients in $R$, denoted by $L_R(E)$. For an arbitrary group $G$, $L_R(E)$ can be viewed as a… Expand

On graded irreducible representations of Leavitt path algebras

- Mathematics
- 2015

Using the E-algebraic systems, various graded irreducible representations of a Leavitt path algebra L of a graph E over a field K are constructed. The concept of a Laurent vertex is introduced and it… Expand

A Note on Invariant Basis Number and Types for Strongly Graded Rings

- Mathematics
- 2021

Given any pair of positive integers (n, k) and any nontrivial finite group G, we show that there exists a ring R of type (n, k) such that R is strongly graded by G and the identity component Re has… Expand

Irreducible representations of Leavitt algebras

- Mathematics
- 2021

For a weighted graph $E$, we construct representation graphs $F$, and consequently, $L_K(E)$-modules $V_F$, where $L_K(E)$ is the Leavitt path algebra associated to $E$, with coefficients in a field… Expand

Prime group graded rings with applications to partial crossed products and Leavitt path algebras

- Mathematics
- 2021

In this article we generalize a classical result by Passman on primeness of unital strongly group graded rings to the class of nearly epsilon-strongly group graded rings which are not necessarily… Expand

Properties of the gradings on ultragraph algebras via the underlying combinatorics

- Mathematics
- 2021

There are two established gradings on Leavitt path algebras associated with ultragraphs, namely the grading by the integers group and the grading by the free group on the edges. In this paper, we… Expand

Simple modules for Kumjian-Pask algebras

- Mathematics
- 2021

The paper introduces the notion of a representation k-graph (∆, α) for a given k-graph Λ. It is shown that any representation k-graph for Λ yields a module for the Kumjian-Pask algebra KP(Λ), and the… Expand

Weighted Leavitt path algebras -- an overview

- Mathematics
- 2021

Weighted Leavitt path algebras were introduced in 2013 by Roozbeh Hazrat. These algebras generalise simultaneously the usual Leavitt path algebras and William Leavitt’s algebras L(m,n). In this paper… Expand

A Survey of Some of the Recent Developments in Leavitt Path Algebras

- Mathematics
- 2020

In this survey article, we describe some of recent ring-theoretic and module-theoretic investigations of a Leavitt path algebra L of an arbitrary directed graph E over a field K. It is shown how a… Expand

#### References

SHOWING 1-10 OF 26 REFERENCES

The center of a Leavitt path algebra

- Mathematics
- 2011

In this paper the center of a Leavitt path algebra is computed for a wide range of situations. A basis as a K-vector space is found for Z(L(E)) when L(E) enjoys some finiteness condition such as… Expand

K-Theory of Azumaya Algebras

- Mathematics
- 2010

For an Azumaya algebra $A$ which is free over its centre $R$, we prove that the $K$-theory of $A$ is isomorphic to $K$-theory of $R$ up to its rank torsion. We observe that a graded central simple… Expand

Leavitt path algebras of separated graphs

- Mathematics
- 2010

Abstract The construction of the Leavitt path algebra associated to a directed graph E is extended to incorporate a family C consisting of partitions of the sets of edges emanating from the vertices… Expand

Locally finite Leavitt path algebras

- Mathematics
- 2008

A group-graded K-algebra A = ⊕g∈GAg is called locally finite in case each graded component Ag is finite dimensional over K. We characterize the graphs E for which the Leavitt path algebra LK(E) is… Expand

Finite-dimensional Leavitt path algebras

- Mathematics
- 2007

Abstract We classify the directed graphs E for which the Leavitt path algebra L ( E ) is finite dimensional. In our main results we provide two distinct classes of connected graphs from which, modulo… Expand

Leavitt path algebras and direct limits

- Mathematics
- 2007

An introduction to Leavitt path algebras of arbitrary directed graphs is presented, and direct limit techniques are developed, with which many results that had previously been proved for countable… Expand

The classification question for Leavitt path algebras

- Mathematics
- 2007

We prove an algebraic version of the Gauge-Invariant Uniqueness Theorem, a result which gives information about the injectivity of certain homomorphisms between ${\mathbb Z}$-graded algebras. As our… Expand

Isomorphisms between Leavitt algebras and their matrix rings

- Mathematics
- 2006

Abstract Let K be any field, let Ln denote the Leavitt algebra of type (1,n – 1) having coefficients in K, and let M d (Ln ) denote the ring of d × d matrices over Ln . In our main result, we show… Expand

Stable rank of Leavitt path algebras

- Mathematics
- 2006

We characterize the values of the stable rank for Leavitt path algebras, by giving concrete criteria in terms of properties of the underlying graph. Introduction and background

Uniqueness theorems and ideal structure for Leavitt path algebras

- Mathematics
- 2006

Abstract We prove Leavitt path algebra versions of the two uniqueness theorems of graph C ∗ -algebras. We use these uniqueness theorems to analyze the ideal structure of Leavitt path algebras and… Expand