The first case of fermat’s last theorem is true for all prime exponents up to 714, 591, 416, 091, 389

@article{Granville1988TheFC,
  title={The first case of fermat’s last theorem is true for all prime exponents up to 714, 591, 416, 091, 389},
  author={A. Granville and Michael Monagan},
  journal={Transactions of the American Mathematical Society},
  year={1988},
  volume={306},
  pages={329-359}
}
  • A. Granville, Michael Monagan
  • Published 1988
  • Mathematics
  • Transactions of the American Mathematical Society
  • We show that if the first case of Fermat’s Last Theorem is false for prime exponent p then p2 divides qp — q for all primes q < Sq. As a corollary we state the theorem of the title. © 1988 American Mathematical Society. 
    30 Citations

    Tables from this paper

    Fermat’s last theorem (case 1) and the Wieferich criterion
    • 10
    • PDF
    FERMAT ' S LAST THEOREM AND THE WIEFERICH CRITERION
    • PDF
    Wieferich's criterion and the abc-conjecture
    • 162
    A new criterion for the first case of Fermat's last theorem
    • 13
    • Highly Influenced
    • PDF
    WIEFERICH PAST AND FUTURE
    • 8
    • PDF
    The continuing search for Wieferich primes
    • 27
    • PDF

    References

    SHOWING 1-10 OF 41 REFERENCES
    Gunderson’s function in Fermat’s last theorem
    • 8
    • PDF
    An additional criterion for the first case of Fermat's last theorem
    • 5
    • PDF
    The irregular primes to 125000
    • 87
    • PDF
    Factoring integers with elliptic curves
    • 1,009
    • PDF
    On the first case of Fermat’s last theorem
    • 14
    • PDF
    On Fermat’s quotient, base two
    • 37
    • PDF
    13 lectures on Fermat's last theorem
    • 244
    Theorems on factorization and primality testing
    • 373