The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes

@article{Levitt1992TheEC,
  title={The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes},
  author={N. Levitt},
  journal={Discrete & Computational Geometry},
  year={1992},
  volume={7},
  pages={59-67}
}
  • N. Levitt
  • Published 1992
  • Mathematics, Computer Science
  • Discrete & Computational Geometry
If a numerical homotopy invariant of finite simplicial complexes has a local formula, then, up to multiplication by an obvious constant, the invariant is the Euler characteristic. Moreover, the Euler characteristic itself has a unique local formula. 
28 Citations
Pascal triangle, Stirling numbers and the unique invariance of the Euler characteristic
  • 4
  • PDF
Functions of finite simplicial complexes that are not locally determined
  • Highly Influenced
  • PDF
The amazing world of simplicial complexes
  • 12
  • PDF
The strong ring of simplicial complexes
  • O. Knill
  • Mathematics, Computer Science
  • ArXiv
  • 2017
  • 9
  • PDF
The energy of a simplicial complex
  • O. Knill
  • Computer Science, Mathematics
  • ArXiv
  • 2019
  • 11
  • PDF
Constant index expectation curvature for graphs or Riemannian manifolds
  • O. Knill
  • Mathematics, Computer Science
  • ArXiv
  • 2019
  • 2
  • PDF
Integral geometric Hopf conjectures
  • 4
  • PDF
...
1
2
3
...

References

SHOWING 1-7 OF 7 REFERENCES