# The effect of numerical integration on the finite element approximation of linear functionals

@article{Babuska2011TheEO, title={The effect of numerical integration on the finite element approximation of linear functionals}, author={Ivo Babuska and Uday Banerjee and Hengguang Li}, journal={Numerische Mathematik}, year={2011}, volume={117}, pages={65-88} }

In this paper, we have studied the effect of numerical integration on the finite element method based on piecewise polynomials of degree k, in the context of approximating linear functionals, which are also known as “quantities of interest”. We have obtained the optimal order of convergence, $${\mathcal{O}(h^{2k})}$$, of the error in the computed functional, when the integrals in the stiffness matrix and the load vector are computed with a quadrature rule of algebraic precision 2k − 1. However…

## 8 Citations

The Effect of Numerical Integration on the Finite Element Approximation of a Second Order Elliptic Equation with Highly Oscillating Coefficients

- Mathematics
- 2015

In this paper, we have studied the effect of numerical integration on the Finite Element Method (FEM) based on the usual Ritz approximation using continuous piecewise linear functions, in the context…

An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods

- Computer Science, MathematicsJ. Comput. Phys.
- 2014

Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods

- Computer Science
- 2013

A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method

- Computer Science
- 2013

A new framework is proposed that allows to follow the concept of the (single‐scale) dual‐weighted residual method at the macroscopic level in order to derive a posteriori error estimates in quantities of interests for multiscale problems.

Simple quadrature rules for a nonparametric nonconforming quadrilateral element

- MathematicsArXiv
- 2022

We introduce simple quadrature rules for the family of nonparametric nonconforming quadrilateral element with four degrees of freedom. Our quadrature rules are motivated by the work of Meng et al.…

An Efficient and Rapid Numerical Quadrature to generate element matrices for quadrilateral and hexahedral elements in Functionally Graded Materials (FGMs)

- EngineeringComput. Math. Appl.
- 2020

Multilevel Quasi-Monte Carlo Uncertainty Quantification for Advection-Diffusion-Reaction

- Mathematics
- 2018

We survey the numerical analysis of a class of deterministic, higher-order QMC integration methods in forward and inverse uncertainty quantification algorithms for advection-diffusion-reaction (ADR)…

Advanced Structured Materials

- Physics
- 2015

Dynamics of solitons is considered in the framework of the extended nonlinear Schrödinger equation (NLSE), which is derived from a system of the Zakharov’s type for the interaction between highand…

## References

SHOWING 1-10 OF 24 REFERENCES

THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS

- Mathematics
- 1972

The effect of numerical quadrature in the p-version of the finite element method

- Mathematics
- 1992

We investigate the use of numerical quadrature in the p-version of the finite element method. We describe a set of minimal conditions that the quadrature rules should satisfy, for various types of…

Estimation of the effect of numerical integration in finite element eigenvalue approximation

- Mathematics
- 1989

SummaryFinite element approximations of the eigenpairs of differential operators are computed as eigenpairs of matrices whose elements involve integrals which must be evaluated by numerical…

The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements

- Mathematics
- 1984

This is the first in a series of three papers in which we discuss a method for ‘post-processing’ a finite element solution to obtain high accuracy approximations for displacements, stresses, stress…

The finite element method for elliptic problems

- MathematicsClassics in applied mathematics
- 2002

From the Publisher:
This book is particularly useful to graduate students, researchers, and engineers using finite element methods. The reader should have knowledge of analysis and functional…

EFFECTS OF QUADRATURE ERRORS IN FINITE ELEMENT APPROXIMATION OF STEADY STATE, EIGENVALUE AND PARABOLIC PROBLEMS

- Mathematics
- 1972

Superconvergence in Galerkin Finite Element Methods

- Mathematics, Physics
- 1995

Some one-dimensional superconvergence results.- Remarks about some of the tools used in Chapter 1.- Local and global properties of L 2-projections.- to several space dimensions: some results about…

Interior maximum-norm estimates for finite element methods, part II

- Mathematics
- 1995

We consider bilinear forms A(.,.) connected with second-order elliptic problems and assume that for u h in a finite element space S h , we have A(u - u h , x) = F(X) for X in S h with local compact…

The finite element method and its reliability

- Computer Science
- 2001

This paper proposes a method for guaranteed a-posteriori error estimation, and Guaranteed a-PosterIORi estimation of the pollution error in the finite element method.