# The dilogarithm function for complex argument

@article{Maximon2003TheDF, title={The dilogarithm function for complex argument}, author={Leonard C. Maximon}, journal={Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences}, year={2003}, volume={459}, pages={2807 - 2819} }

This paper summarizes the basic properties of the Euler dilogarithm function, often referred to as the Spence function. These include integral representations, series expansions, linear and quadratic transformations, functional relations, numerical values for special arguments and relations to the hypergeometric and generalized hypergeometric function. The basic properties of the two functions closely related to the dilogarithm (the inverse tangent integral and Clausen's integral) are also…

## 78 Citations

New integral representations of the polylogarithm function

- MathematicsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- 2006

Maximon has recently given an excellent summary of the properties of the Euler dilogarithm function and the frequently used generalizations of the dilogarithm, the most important among them being the…

The Polylogarithm Function in Julia

- Computer ScienceArXiv
- 2020

This paper presents an algorithm for calculating polylogarithms for both complex parameter and argument and evaluates it thoroughly in comparison to the arbitrary precision implementation in Mathematica.

New definite integrals and a two-term dilogarithm identity from a hyperbolic change of variables

- Mathematics
- 2010

Polylogarithms, functional equations and more: The elusive essays of William Spence (1777–1815)

- Mathematics
- 2013

Harmonic Sums, Polylogarithms, Special Numbers, and their Generalizations

- MathematicsArXiv
- 2013

In these introductory lectures we discuss classes of presently known nested sums, associated iterated integrals, and special constants which hierarchically appear in the evaluation of massless and…

The polylogarithm and the Lambert W functions in thermoelectrics

- Mathematics
- 2011

In this work, we determine the conditions for the extremum of the figure of merit, θ2, in a degenerate semiconductor for thermoelectric (TE) applications. We study the variation of the function θ2…

Perturbative Quantum Field Theory Meets Number Theory

- Mathematics
- 2014

Feynman amplitudes are being expressed in terms of a well structured family of special functions and a denumerable set of numbers—periods, studied by algebraic geometers and number theorists. The…

On Some Integral Representation Of $\zeta(n)$ Involving Nielsen's Generalized Polylogarithms And The Related Partition Problem

- Mathematics
- 2021

In this paper, we study a family of single variable integral representations for some products of ζ(2n + 1), where ζ(z) is Riemann zeta function and n is positive integer. Such representation…

Green's function for the Laplace–Beltrami operator on a toroidal surface

- MathematicsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- 2013

Green's function for the Laplace–Beltrami operator on the surface of a three-dimensional ring torus is constructed. An integral ingredient of our approach is the stereographic projection of the torus…

## References

SHOWING 1-10 OF 52 REFERENCES

Dilogarithm identities

- Mathematics
- 1994

We study the dilogarithm identities from algebraic, analytic, asymptotic, $K$-theoretic, combinatorial and representation-theoretic points of view. We prove that a lot of dilogarithm identities…

On Nielsen's generalized polylogarithms and their numerical calculation

- Mathematics
- 1970

The generalized polylogarithms of Nielsen are studied, in particular their functional relations. New integral expressions are obtained, and relations for function values of particular arguments are…

Quantum Electrodynamics

- PhysicsNature
- 1947

THE subject of quantum electrodynamics is extremely difficult, even for the case of a single electron. The usual method of solving the corresponding wave equation leads to divergent integrals. To…

Polylogarithmic analysis of chemical potential and fluctuations in a D‐dimensional free Fermi gas at low temperatures

- Physics
- 1995

The chemical potential and fluctuations in number of particles in a D‐dimensional free Fermi gas at low temperatures are obtained by means of polylogarithms. This idea is extended to show that the…

Nielsen's generalized polylogarithms

- Mathematics
- 1986

Properties (in particular functional relations and special values) of the functions \[\begin{gathered} ( - 1)^{n + p - 1} (n - 1)!p!S_{n,p} (z) = \int_0^1 {\log ^{n - 1} t\log ^p (1 - zt)\frac{{dt}}…

Fourth-order radiative corrections to electron-photon vertex and the Lamb-shift value

- Physics
- 1971

SummaryThe slope of the charge form factor of the electron is analytically evaluated in fourth-order perturbation theory of QED and found to bem2F′1(0)=(α/π)2[−4819/5184−(49/72)ζ(2)+3ζ(2) log…

Radiative corrections to electron-proton scattering

- Physics
- 2000

The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the finite size of the nucleon. For initial electron energies above 8 GeV and large…

Ueber die Integration logarithmisch-rationaler Differentiale.

- Mathematics
- 1828

.Bekanntlich reduciren sich viele Aufgaben der Geometrie und Physik zuletzt auf die Auflösung von Gleichungen, welche in den schwierigeren Fällen sowohl die unbekannten Gröfsen als deren Ableitungen…