The density of primes dividing a particular non-linear recurrence sequence

@article{Gorman2015TheDO,
  title={The density of primes dividing a particular non-linear recurrence sequence},
  author={A. Gorman and Tyler Genao and Heesu Hwang and Noam Kantor and Sarah Parsons and Jeremy A. Rouse},
  journal={arXiv: Number Theory},
  year={2015}
}
Define the sequence $\{b_n\}$ by $b_0=1,b_1=1, b_2=2,b_3=1$, and $$b_n=\begin{cases} \frac{b_{n-1}b_{n-3}-b_{n-2}^2}{b_{n-4}}&\textrm{if}~ n\not\equiv 0\pmod 3, \frac{b_{n-1}b_{n-3}-3b_{n-2}^2}{b_{n-4}}&\textrm{if}~ n\equiv 0\pmod 3. We relate this sequence $\{b_n\}$ to the coordinates of points on the elliptic curve $E:y^2+y=x^3-3x+4$. We use Galois representations attached to $E$ to prove that the density of primes dividing a term in this sequence is equal to $\frac{179}{336}$. Furthermore… Expand
3 Citations
Arithmetic of quaternion origami
  • 1
  • Highly Influenced
  • PDF
Density of odd order reductions for elliptic curves with a rational point of order 2
  • 1
  • PDF

References

SHOWING 1-10 OF 14 REFERENCES
The density of primes dividing a term in the Somos-5 sequence
  • 3
  • PDF
The set of primes dividing the Lucas numbers has density 2∕3
  • 51
  • PDF
Galois theory of iterated endomorphisms
  • 35
  • PDF
Surjectivity of mod 2n representations of elliptic curves
  • 26
  • Highly Influential
  • PDF
Advanced Topics in the Arithmetic of Elliptic Curves
  • 1,588
  • Highly Influential
Analytic Number Theory
  • 2,423
  • PDF
The arithmetic of elliptic curves
  • J. Silverman
  • Mathematics, Computer Science
  • Graduate texts in mathematics
  • 1986
  • 3,388
  • PDF
Primes of the form x2 + ny2
  • 475
  • Highly Influential
  • PDF
The Magma Algebra System I: The User Language
  • 5,351
  • PDF
The Magma algebra system. I
  • The user language. J. Symbolic Comput.,
  • 1997
...
1
2
...