The density of primes dividing a particular non-linear recurrence sequence
@article{Gorman2015TheDO, title={The density of primes dividing a particular non-linear recurrence sequence}, author={A. Gorman and Tyler Genao and Heesu Hwang and Noam Kantor and Sarah Parsons and Jeremy A. Rouse}, journal={arXiv: Number Theory}, year={2015} }
Define the sequence $\{b_n\}$ by $b_0=1,b_1=1, b_2=2,b_3=1$, and $$b_n=\begin{cases} \frac{b_{n-1}b_{n-3}-b_{n-2}^2}{b_{n-4}}&\textrm{if}~ n\not\equiv 0\pmod 3, \frac{b_{n-1}b_{n-3}-3b_{n-2}^2}{b_{n-4}}&\textrm{if}~ n\equiv 0\pmod 3. We relate this sequence $\{b_n\}$ to the coordinates of points on the elliptic curve $E:y^2+y=x^3-3x+4$. We use Galois representations attached to $E$ to prove that the density of primes dividing a term in this sequence is equal to $\frac{179}{336}$. Furthermore… Expand
3 Citations
References
SHOWING 1-10 OF 14 REFERENCES
The arithmetic of elliptic curves
- Mathematics, Computer Science
- Graduate texts in mathematics
- 1986
- 3,388
- PDF
The Magma Algebra System I: The User Language
- Computer Science, Mathematics
- J. Symb. Comput.
- 1997
- 5,351
- PDF
The Magma algebra system. I
- The user language. J. Symbolic Comput.,
- 1997