The complexity of generalized domino tilings

  title={The complexity of generalized domino tilings},
  author={Igor Pak and Jed Yang},
  journal={Electr. J. Comb.},
Tiling planar regions with dominoes is a classical problem, where the decision and counting problems are polynomial. We prove a variety of hardness results (both NPand #P-completeness) for different generalizations of dominoes in three and higher dimensions. 


Publications referenced by this paper.
Showing 1-10 of 38 references

Rémila , Tiling a polygon with two kinds of rectangles

  • É. Rém
  • Discrete Comput . Geom .
  • 2013

Matching theory

  • L. Lovász, M. D. Plummer
  • AMS, Providence, RI
  • 2009
1 Excerpt

Tilère, The dimer model in statistical mechanics, Lecture notes at Swiss Doctoral Program in Mathematics and the EPFL doctoral school, University of Neuchâtel

  • B. de
  • 2008

A survey of Pfaffian orientations of graphs

  • R. Thomas
  • Proc. ICM Madrid, Vol. III, 963–984, Zürich
  • 2006
1 Excerpt

Robinson , Undecidability and nonperiodicity for tilings of the plane

  • M. RobR.
  • Invent . Math .
  • 2005

Geometric and algebraic properties of polyomino tilings

  • M. Korn
  • MIT Ph.D. thesis,
  • 2004

Nešetril, Counting list homomorphisms for graphs with bounded degrees, in DIMACS Ser

  • J. P. Hell
  • Discrete Math. Theoret. Comput
  • 2004

Similar Papers

Loading similar papers…