The classification of quasi-alternating Montesinos links

@inproceedings{Issa2017TheCO,
  title={The classification of quasi-alternating Montesinos links},
  author={Ahmad Issa},
  year={2017}
}
In this note, we complete the classification of quasi-alternating Montesinos links. We show that the quasi-alternating Montesinos links are precisely those identified independently by Qazaqzeh-Chbili-Qublan and Champanerkar-Ording. A consequence of our proof is that a Montesinos link $L$ is quasi-alternating if and only if its double branched cover is an L-space, and bounds both a positive definite and a negative definite 4-manifold with vanishing first homology. 

Figures from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 27 REFERENCES

24(9):1550048

Abhijit Champanerkar, Philip Ording. A note on quasi-alternating Montesinos lin Ramifications
  • 15,
  • 2015
VIEW 8 EXCERPTS
HIGHLY INFLUENTIAL

Duke Math

Joshua Evan Greene. Alternating links, definite surfaces
  • J., 166(11):2133–2151,
  • 2017
VIEW 7 EXCERPTS
HIGHLY INFLUENTIAL

Geom

Peter S. Ozsváth, Jacob Rasmussen, Zoltán Szabó. Odd Khovanov homology.Algebr
  • Topol., 13(3):1465–1488,
  • 2013
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

non-quasi-alternating links

Joshua Greene. Homologically thin
  • Math. Res. Lett., 17(1):39–49,
  • 2010
VIEW 8 EXCERPTS
HIGHLY INFLUENTIAL

Cambridge Philos

Tye Lidman, Steven Sivek. Quasi-alternating links with small determin Proc
  • Soc., 162(2):319–336,
  • 2017
VIEW 1 EXCERPT

Geom

Joshua A. Howie. A characterisation of alternating knot exteriors
  • Topol., 21(4):2353– 2371,
  • 2017

Geom

Joshua Evan Greene, Adam Simon Levine. Strong Heegaard diagrams, strong L-spaces. Algebr
  • Topol., 16(6):3167–3208,
  • 2016

24(7):1550038

Masakazu Teragaito. Quasi-alternating links, Kauffman polynomials. J. Knot Theory Ramifications
  • 17,
  • 2015
VIEW 1 EXCERPT