The bar involution for quantum symmetric pairs
@article{Balagovic2014TheBI, title={The bar involution for quantum symmetric pairs}, author={Martina Balagovic and Stefan Kolb}, journal={arXiv: Quantum Algebra}, year={2014} }
We construct a bar involution for quantum symmetric pair coideal subalgebras $B_{\mathbf{c},\mathbf{s}}$ corresponding to involutive automorphisms of the second kind of symmetrizable Kac-Moody algebras. To this end we give unified presentations of these algebras in terms of generators and relations extending previous results by G. Letzter and the second named author. We specify precisely the set of parameters $\mathbf{c}$ for which such an intrinsic bar involution exists.
46 Citations
Defining relations for quantum symmetric pair coideals of Kac–Moody type
- MathematicsJournal of Combinatorial Algebra
- 2021
Classical symmetric pairs consist of a symmetrizable Kac-Moody algebra $\mathfrak{g}$, together with its subalgebra of fixed points under an involutive automorphism of the second kind. Quantum group…
The bar involution for quantum symmetric pairs -- hidden in plain sight
- Mathematics, Physics
- 2021
We show that all quantum symmetric pair coideal subalgebras Bc of Kac-Moody type have a bar involution for a suitable choice of parameters c. The proof relies on a generalized notion of quasi…
Defining relations of quantum symmetric pair coideal subalgebras
- MathematicsForum of Mathematics, Sigma
- 2021
Abstract We explicitly determine the defining relations of all quantum symmetric pair coideal subalgebras of quantised enveloping algebras of Kac–Moody type. Our methods are based on star products on…
Reflection matrices, coideal subalgebras and generalized Satake diagrams of affine type
- Mathematics
- 2016
We present a generalization of the theory of quantum symmetric pairs as developed by Kolb and Letzter. We introduce a class of generalized Satake diagrams that give rise to (not necessarily…
Hall algebras and quantum symmetric pairs of Kac-Moody type
- Mathematics
- 2020
We extend our ıHall algebra construction from acyclic to arbitrary ıquivers, where the ıquiver algebras are infinite-dimensional 1-Gorenstein in general. Then we establish an injective homomorphism…
Quantum supersymmetric pairs and $\imath$Schur duality of type AIII
- Mathematics
- 2022
Expanding the classic work of Letzter and Kolb, we construct quantum supersymmetric pairs $({\mathbf U},{\mathbf U}^\imath)$ of type AIII and formulate their basic properties. We establish an…
Canonical bases arising from quantum symmetric pairs
- Mathematics
- 2016
We develop a general theory of canonical bases for quantum symmetric pairs $$({\mathbf{U}}, {\mathbf{U}}^\imath )$$(U,Uı) with parameters of arbitrary finite type. We construct new canonical bases…
Braided module categories via quantum symmetric pairs
- MathematicsProceedings of the London Mathematical Society
- 2019
Let g be a finite‐dimensional complex semisimple Lie algebra. The finite‐dimensional representations of the quantized enveloping algebra Uq(g) form a braided monoidal category Oint . We show that the…
References
SHOWING 1-10 OF 23 REFERENCES
Geometric Schur Duality of Classical Type
- Mathematics
- 2014
This is a generalization of the classic work of Beilinson, Lusztig and MacPherson. In this paper (and an Appendix) we show that the quantum algebras obtained via a BLM-type stabilization procedure in…
Reflection equation algebras, coideal subalgebras, and their centres
- Mathematics
- 2008
Reflection equation algebras and related $${U{_q}(\mathfrak g)}$$ -comodule algebras appear in various constructions of quantum homogeneous spaces and can be obtained via transmutation or…
Quantum Symmetric Pairs and Their Zonal Spherical Functions
- Mathematics
- 2002
We study the space of biinvariants and zonal spherical functions associated to quantum symmetric pairs in the maximally split case. Under the obvious restriction map, the space of biinvariants is…
Symmetric Pairs for Quantized Enveloping Algebras
- Mathematics
- 1999
Abstract Let θ be an involution of a semisimple Lie algebra g , let g θ denote the fixed Lie subalgebra, and assume the Cartan subalgebra of g has been chosen in a suitable way. We construct a…
Coideal Subalgebras and Quantum Symmetric Pairs
- Mathematics
- 2001
Coideal subalgebras of the quantized enveloping algebra are surveyed, with selected proofs included. The first half of the paper studies generators, Harish-Chandra modules, and associated quantum…
Real forms of Uq(g)
- Mathematics
- 1992
In this Letter we consider the real forms of quantum groups associated to generalized Cartan matrices. There are two main results. The first is a description of the Hopf algebra automorphisms and of…
Lectures on quantum groups
- Mathematics
- 1995
Introduction Gaussian binomial coefficients The quantized enveloping algebra $U_q(\mathfrak s \mathfrak {1}_2)$ Representations of $U_q(\mathfrak{sl}_2)$ Tensor products or: $U_q(\mathfrak{sl}_2)$ as…