The average analytic rank of elliptic curves
@article{HeathBrown2003TheAA, title={The average analytic rank of elliptic curves}, author={D. R. Heath-Brown}, journal={Duke Mathematical Journal}, year={2003}, volume={122}, pages={591-623} }
All the results in this paper are conditional on the Riemann Hypothesis for the L-functions of elliptic curves. Under this assumption, we show that the average analytic rank of all elliptic curves over Q is at most 2, thereby improving a result of Brumer [2]. We also show that the average within any family of quadratic twists is at most 3/2, improving a result of Goldfeld [3]. A third result concerns the density of curves with analytic rank at least R, and shows that the proportion of such…
65 Citations
Average analytic ranks of elliptic curves over number fields
- Mathematics
- 2022
. We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In particular, under the assumptions that all elliptic curves over a number field K are…
A conditional determination of the average rank of elliptic curves
- MathematicsJ. Lond. Math. Soc.
- 2016
It is said that nonreal zeros of elliptic curve $L$-functions in a family have a direct influence on the average rank in this family.
Variation in the number of points on elliptic curves and applications to excess rank
- Mathematics
- 2005
Michel proved that for a one-parameter family of elliptic curves over Q(T) with non-constant j(T) that the second moment of the number of solutions modulo p is p^2 + O(p^{3/2}). We show this bound is…
On the distribution of analytic ranks of elliptic curves
- Mathematics, Computer Science
- 2020
An upper bound for the probability for an elliptic curve with analytic rank $\leq a$ for $a \geq 11$ is given and an upper bound of n-th moments of analytic ranks of elliptic curves is given.
Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves
- Mathematics
- 2010
We prove a theorem giving the asymptotic number of binary quartic forms having bounded invariants; this extends, to the quartic case, the classical results of Gauss and Davenport in the quadratic and…
One-level density of the family of twists of an elliptic curve over function fields
- MathematicsJournal of Number Theory
- 2022
Low-lying zeros of elliptic curve L-functions: Beyond the Ratios Conjecture
- MathematicsMathematical Proceedings of the Cambridge Philosophical Society
- 2016
Abstract We study the low-lying zeros of L-functions attached to quadratic twists of a given elliptic curve E defined over $\mathbb{Q}$. We are primarily interested in the family of all twists…
Counting elliptic curves with local conditions and its applications
- Mathematics, Computer Science
- 2020
An upper bound of $n$-th moments of analytic ranks of elliptic curves, and an upper bounds for the probability that an elliptic curve has analytic rank $\leq a$ for $a \geq 11$ under GRH for elliptic $L$-functions are given.
References
SHOWING 1-10 OF 18 REFERENCES
On the modularity of elliptic curves over Q
- Mathematics
- 1999
In this paper, building on work of Wiles [Wi] and of Wiles and one of us (R.T.) [TW], we will prove the following two theorems (see §2.2). Theorem A. If E/Q is an elliptic curve, then E is modular.…
Ranks of elliptic curves
- Mathematics
- 2002
This paper gives a general survey of ranks of elliptic curves over the field of rational numbers. The rank is a measure of the size of the set of rational points. The paper includes discussions of…
Low lying zeros of families of L-functions
- Mathematics
- 1999
In Iwaniec-Sarnak [IS] the percentages of nonvanishing of central values of families of GL_2 automorphic L-functions was investigated. In this paper we examine the distribution of zeros which are at…
Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?)
- Mathematics
- 1995
When Andrew John Wiles was 10 years old, he read Eric Temple Bell’s The Last Problem and was so impressed by it that he decided that he would be the first person to prove Fermat’s Last Theorem. This…
Zeroes of zeta functions and symmetry
- Mathematics
- 1999
Hilbert and Polya suggested that there might be a natural spectral interpretation of the zeroes of the Riemann Zeta function. While at the time there was little evidence for this, today the evidence…
Ring-Theoretic Properties of Certain Hecke Algebras
- Mathematics
- 1995
The purpose of this article is to provide a key ingredient of [W2] by establishing that certain minimal Hecke algebras considered there are complete intersections. As is recorded in [W2], a method…
The Grothendieck Festschrift
- Mathematics
- 1990
The many diverse articles presented in these three volumes, collected on the occasion of Alexander Grothendieck’s sixtieth birthday and originally published in 1990, were offered as a tribute to one…
Random Matrices
- Computer Science
- 2005
This workshop was unusually diverse, even by MSRI standards; the attendees included analysts, physicists, number theorists, probabilists, combinatorialists, and more.
Formules explicites et minoration de conducteurs de vari'et'es alg'ebriques
- Mathematics
- 1986
© Foundation Compositio Mathematica, 1986, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions…