The asymptotic mean squared error of L-smoothing splines

@inproceedings{Felix1993TheAM,
  title={The asymptotic mean squared error of L-smoothing splines},
  author={Felix and P. Abramovich},
  year={1993}
}
We establish the asymptotical equivalence between L-spline smoothing and kernel estimation. The equivalent kernel is used to derive the asymptotic mean squared error of the L-smoothing spline estimator. The paper extends the corresponding results for polynomial spline smoothing. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Spline Smoothing and Nonparametric Regression

  • R. L. Eubank
  • 1988
Highly Influential
4 Excerpts

Asymptotics for M-type smoothing spline

  • D. D. Cox
  • Ann. Statist.,
  • 1983
Highly Influential
4 Excerpts

A comparison of a spline estimate to its equivalent kernel estimate

  • K. Messer
  • Ann. Statist.,
  • 1991
2 Excerpts

Spline Smoothing and Nonparametric Regression ( Dekker , New York )

  • R. L. Eubank
  • 1988

Spline smoothing: the equivalent variable kernel method

  • B. W. Silverman
  • Ann. Statist.,
  • 1984
1 Excerpt

The asymptotic integrated mean square error for smoothing noisy data by splines

  • P. Speckman
  • 1981

Some results on Tchebyche an spline functions

  • G. S. Kimeldorf, G. Wahba
  • J. Math. Anal. Appl.,
  • 1971
2 Excerpts

Introduction to Functional Analysis. Moscow: Nauka (in Russian)

  • B. Z. Vulikh
  • 1967

Similar Papers

Loading similar papers…