The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields

@article{Freitas2015TheAF,
  title={The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields},
  author={Nuno Freitas and S. Siksek},
  journal={Compositio Mathematica},
  year={2015},
  volume={151},
  pages={1395 - 1415}
}
Let $K$ be a totally real field. By the asymptotic Fermat’s Last Theorem over$K$ we mean the statement that there is a constant $B_{K}$ such that for any prime exponent $p>B_{K}$, the only solutions to the Fermat equation $$\begin{eqnarray}a^{p}+b^{p}+c^{p}=0,\quad a,b,c\in K\end{eqnarray}$$ are the trivial ones satisfying $abc=0$. With the help of modularity, level lowering and image-of-inertia comparisons, we give an algorithmically testable criterion which, if satisfied by $K$, implies the… Expand
On Fermat’s equation over some quadratic imaginary number fields
Le théorème de Fermat sur certains corps de nombres totalement réels
On Asymptotic Fermat over $\mathbb{Z}_p$ extensions of $\mathbb{Q}$
Asymptotic Generalized Fermat's Last Theorem over Number Fields
...
1
2
3
4
...

References

SHOWING 1-10 OF 79 REFERENCES
...
1
2
3
4
5
...