The amino-terminal portion of CFTR forms a regulated Cl- channel.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel consists of two motifs (each containing a membrane-spanning domain [MSD] and a nucleotide-binding domain [NBD]) linked by an R domain. We tested the hypothesis that one MSD-NBD motif could form a Cl- channel. The amino-terminal portion of CFTR (D836X, which contains MSD1, NBD1, and the R domain) formed Cl- channels with conductive properties identical to those of CFTR. However, channel regulation differed. Although phosphorylation increased activity, channels opened without phosphorylation. MgATP stimulated D836X more potently than CFTR and may interact at more than one site. These data and migration of D836X on sucrose density gradients suggest that D836X may function as a multimer. Thus, the amino-terminal portion of CFTR contains all of the structures required to build a regulated Cl- channel.

Statistics

050100150'95'97'99'01'03'05'07'09'11'13'15'17
Citations per Year

548 Citations

Semantic Scholar estimates that this publication has 548 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Sheppard1994TheAP, title={The amino-terminal portion of CFTR forms a regulated Cl- channel.}, author={David N Sheppard and Lynda S . Ostedgaard and Devra P. Rich and M. J. Welsh}, journal={Cell}, year={1994}, volume={76 6}, pages={1091-8} }