The accelerated integer GCD algorithm
@article{Weber1995TheAI, title={The accelerated integer GCD algorithm}, author={Kenneth Weber}, journal={ACM Trans. Math. Softw.}, year={1995}, volume={21}, pages={111-122} }
Since the greatest common divisor (GCD) of two integers is a basic arithmetic operation used in many mathematical software systems, new algorithms for its computation are of widespread interest. The accelerated integer GCD algorithm discussed here is based on a reduction step proposed by Sorenson (k-ary reduction), coupled with the dmod operation similar to Norton's smod. Some practical limitations of Sorenson's reduction have been eliminated. Worst-case complexity is still O(n2) for n-bit…
57 Citations
New Modified Euclidean and Binary Greatest Common Divisor Algorithm
- Computer Science, Mathematics
- 2016
The implementation results show that the iteration required to compute GCD using ModEB algorithm are substantially less as compared to different GCD algorithms, and the worst case time complexity of the proposed algorithm is O(n2) with respect to the bit-time complexity for two n-bit integers.
Systolic Algorithms for Long Integer GCD Computation
- Computer ScienceCONPAR
- 1994
A word-level generalization which is suitable for systolic parallelization on multiprocessor architectures and more suitable to least-significant digits first arithmetic algorithms than Leiserson conversion lemma is found.
Parallel Implementation of the Accelerated Integer GCD Algorithm
- Computer ScienceJ. Symb. Comput.
- 1996
A parallel implementation of the accelerated algorithm for the Sequent Balance, a shared-memory multiprocessor, that displays speed-ups of 1.6, 2.5, 3.4 and 4.0 using 2, 4, 8 and 16 processors, respectively.
Integer and Rational Arithmetic on MasPar
- Computer ScienceDISCO
- 1996
The speed of integer and rational arithmetic increases significantly by systolic implementation on a SIMD architecture, and the practical experiments show that the timings depend linearly on the input length, demonstrating the effectiveness of the syStolic paradigm for multiple precision arithmetic.
Asymptotically Fast GCD Computation in Z[i]
- Computer Science, MathematicsANTS
- 2000
An asymptotically fast algorithm for the computation of the greatest common divisor (GCD) of two Gaussian integers based on a controlled Euclidean descent that achieves a time bound of O(n(\rm log ~\it n)^{2} \rm log~ log~ \it n)\) bit operations for operands bounded by 2 n in absolute value.
A novel fast hybrid GCD computation algorithm
- Computer Science
- 2014
We propose a novel algorithm for integer's greatest common divisor GCD computation that hybridises both Euclidian and binary algorithms according to a new schema, in order to accelerate the GCD…
(1+i)-ary GCD Computation in Z[i] as an Analogue to the Binary GCD Algorithm
- Computer Science, MathematicsJ. Symb. Comput.
- 2000
A novel algorithm for GCD computation over the ring of Gaussian integers inZi ], that is similar to the binary GCD algorithm forZ, in which powers of 1 +i are extracted, which achieves a running time of O(n2) bit operations.
Designing systolic arrays for integer GCD computation
- Computer ScienceProceedings of IEEE International Conference on Application Specific Array Processors (ASSAP'94)
- 1994
Experiments using field programmable gate arrays demonstrate the possibility of speeding-up long integer arithmetic by two orders of magnitude by implementing this algorithm in dedicated hardware.
High Speed Modular Divider Based on GCD Algorithm
- Computer Science, MathematicsICICS
- 2007
The conventional GCD algorithm is extended to radix-4 to increase the efficiency of algorithm the number of comparisons is reduced and the algorithm enables very fast computation of division over GF(2m).
References
SHOWING 1-10 OF 19 REFERENCES
Parallel integer gcd algorithms and their application to polynomial gcd
- Computer Science
- 1994
Two new integer greatest common divisor (GCD) algorithms, the accelerated GCD and the modular GCD, are presented and a new version of the GCDHEU algorithm, GCDCOLL--the collusive polynomial GCD algorithm, that simultaneously performs more than one search for the result is designed and experimented.
Comparing several GCD algorithms
- Computer ScienceProceedings of IEEE 11th Symposium on Computer Arithmetic
- 1993
The execution times of several algorithms for computing the GCD of arbitrary precision integers are compared, and an improved Lehmer algorithm using two digits in partial consequence computation, and a generation of the binary algorithm using a new concept of modular conjugates are introduced.
An Algorithm for Exact Division
- Computer ScienceJ. Symb. Comput.
- 1993
An algorithm which computes the quotient of two long integers in this particular situation, starting from the least-significant digits of the operands, which is better suited for systolic parallelization in a "least-significant digit first" pipelined manner.
Two Fast GCD Algorithms
- Computer ScienceJ. Algorithms
- 1994
It is shown that sequential versions of both algorithms take Θ( n 2 /log n ) bit operations in the worst case to compute the GCD of two n -bit integers, which compares favorably to the Euclidean and both binary algorithms, which takes Θ ( n 2 ) time.
A Shift-Remainder GCD Algorithm
- MathematicsAAECC
- 1987
An integer greatest common divisor algorithm which uses a "shift-divide" instruction to compute the gcd of two integers u, v, and for uniformly distributed integers in the range [0,u-1] , the average run-time is experimentally 0.555 ln u.
A generalization of the binary GCD algorithm
- Computer ScienceISSAC '93
- 1993
A generalization of the binary algorithm for operation at ‘word level” by using a new concept of ‘modular conjugates” computes the GCD of multiprecision integers two times faster than Lehmer–Euclid…
GCDHEU: Heuristic Polynomial GCD Algorithm Based On Integer GCD Computation
- Business, Computer ScienceJ. Symb. Comput.
- 1984
A p-adic algorithm for univariate partial fractions
- Mathematics, Computer ScienceSYMSAC '81
- 1981
Partial fractions is an important algebraic operation with many applications in applied mathematics, physics and engineering. It is also an important operation in any computer symbolic and algebraic…
The Art of Computer Programming
- Engineering, Physics
- 1968
The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
The Art of Computer Programmmg
- Vol. 2. Seminumerical Algorithms, 2nd ed. Addison-Wesley, Reading, Mass.
- 1981