The Variety of Positive Superdivisors of a Supercurve ( Supervortices )

@inproceedings{Prez1993TheVO,
  title={The Variety of Positive Superdivisors of a Supercurve ( Supervortices )},
  author={J. P{\'e}rez and D. Hern{\'a}ndez Ruip{\'e}rez and C. Sancho de Salas},
  year={1993}
}
The supersymmetric product of a supercurve is constructed with the aid of a theorem of algebraic invariants and the notion of positive relative superdi-visor (supervortex) is introduced. A supercurve of positive superdivisors of degree 1 (supervortices of vortex number 1) of the original supercurve is constructed as its supercurve of conjugate fermions, as well as the supervariety of relative positive su-perdivisors of degre p (supervortices of vortex number p.) A universal superdivisor is… CONTINUE READING

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

A Note on the global structure of Supermoduli Spaces

  • C. Reina Falqui
  • Supersymmetric Products for SUSY - curves , Diff…
  • 1991

Domı́nguez Pérez , Line bundles over families of ( super ) Riemann surfaces , I : The non - graded case , II : The graded case , Preprint Dip

  • W. L. Chow
  • Mat . Univ . Genova
  • 1991

Geometry of Superconformal Manifolds

  • A. A. Rosly, A. S. Schwarz, A. A. Voronov
  • Classical Lie supergroups and Lie superalgebras…
  • 1990

Moduli of Super Riemann Surfaces

  • M. Rothstein LeBrun
  • Commun . Math . Phys .
  • 1990

Vortices in Holomorphic Line Bundles over Closed Käler Manifolds

  • J. A. Bruzzo
  • Commun . Math . Phys .
  • 1990

Determinant bundles and Virasoro Algebras

  • V. V. Schechtman A. A. Beilinson
  • Commun . Math . Phys .
  • 1988

Graded Riemann Surfaces

  • P. Bryant Batchelor
  • Commun . Math . Phys .
  • 1988

Construction intrinsèque du faisceau de Berezin d ’ une variété graduée

  • J. Muñoz Masqué
  • Algebraic Geometry , Graduate Texts in Maths
  • 1977

Projective Embeddings of Complex Superman - ifolds

  • C. LeBrun, Yat-Sun Poon, R. O. Wells
  • Ann . of Math .
  • 1973

The Jacobian variety ot an algebraic curve

  • D. Hernández Ruipérez, C. Sancho de Salas
  • Amer . J . of Math .
  • 1954

Similar Papers

Loading similar papers…