The VEGFR2 and PKA pathways converge at MEK/ERK1/2 to promote survival in serum deprived neuronal cells

Abstract

Identifying prosurvival mechanisms in stressed neuronal cells would provide protective strategies to hinder neurodegeneration. Recent evidence shows that vascular endothelial growth factor (VEGF), a well-established mitogen in endothelial cells, can mediate neuroprotection against damaging insults through the activation of its cognate receptor VEGFR2. In addition, growth factor receptor signaling pathways have been shown to crosstalk with cAMP-dependent Protein Kinase A (PKA) to protect neuronal cells from harmful stimuli. Whether a relationship exists between VEGFR2 and PKA in mediating neuroprotection under stressful conditions is unknown. Using SK-N-SH neuronal cells as a model system, we show that serum deprivation induces an upregulation in VEGF and VEGFR2 that concomitantly serves as a prosurvival signaling pathway. Inhibitor studies revealed that PKA functioned concurrently with VEGFR2 pathway to signal the activation of the extracellular signal-regulated protein kinases (ERK1/2) as protection against caspase-3/7 activation and a subsequent cell death. The loss in cell viability induced by VEGFR2 and PKA inhibition was prevented by caspase inhibition or overexpression of ERK1. Overexpression of the antiapoptotic protein Bcl-xL also promoted survival when VEGFR2 function was blocked. However, the protection elicited by all three treatments were prevented by the inclusion of a selective inhibitor of mitogen-activated protein kinase kinase (MEK), the upstream kinase that activates ERK1/2. Taken together, these findings suggested that PKA and VEGFR2 converge at the MEK/ERK1/2 pathway to protect serum starved neuronal cells from a caspase-dependent cell death.

DOI: 10.1007/s11010-007-9542-2

9 Figures and Tables

Cite this paper

@article{Gomes2007TheVA, title={The VEGFR2 and PKA pathways converge at MEK/ERK1/2 to promote survival in serum deprived neuronal cells}, author={Evan Gomes and Luena Papa and Tianfeng Hao and Patricia Rockwell}, journal={Molecular and Cellular Biochemistry}, year={2007}, volume={305}, pages={179-190} }