The Spectrum of the Off-diagonal Fibonacci Operator by J anine M. Dahl The family of off-diagonal Fibonacci operators can be considered as Jacobi matrices acting in .e2(Z) with diagonal entries zero and off-diagonal entries given by sequences in the hull of the Fibonacci substitution sequence. The spectrum is independent of the sequence chosen and thus the same for all operators in the family. The spectrum is purely singular continuous and has Lebesgue measure zero. We will consider the trace… CONTINUE READING