The Simplest Equation Method for Solving Some Important Nonlinear Partial Differential Equations

@inproceedings{Mirzazadeh2013TheSE,
  title={The Simplest Equation Method for Solving Some Important Nonlinear Partial Differential Equations},
  author={M. Mirzazadeh},
  year={2013}
}
The simplest equation method presents a wide applicability to handling nonlinear wave equations. In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The simplest equation method is used to construct the travelling wave solutions of new Hamiltonian amplitude equation, (3 + 1)-dimensional generalized KP equation, Burgers-KP equation, coupled Higgs field equation, generalized Zakharov System. New Hamiltonian amplitude equation is an equation which governs… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 32 references

Multiple - soliton solutions for a ( 3 + 1 )dimensional generalized KP equation

  • A. M. Wazwaz
  • Commun . Nonlinear Sci . Numer . Simulat .
  • 2012

Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation, Commun

  • A. M. Wazwaz
  • Nonlinear Sci. Numer. Simulat
  • 2012
1 Excerpt

The simplest equation method to study perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity

  • N. Taghizadeh, M. Mirzazadeh
  • Commun Nonlinear Sci Numer Simulat
  • 2012
1 Excerpt

Asaad, Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation

  • M.G.W.X. Ma. A. Abdeljabbar
  • Appl. Math. Comput
  • 2011
1 Excerpt

The G′/G method and topological soliton solution of the K(m,n) equation, Commun

  • G. Ebadi, A. Biswas
  • Nonlinear Sci. Numer. Simulat
  • 2011
1 Excerpt

′ / G method and topological soliton solution of the K ( m , n ) equation

  • A. Biswas, G The
  • Commun . Nonlinear Sci . Numer . Simulat .
  • 2011

Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Commun

  • N. K. Vitanov, Z. I. Dimitrova
  • Nonlinear Sci. Numer. Simul
  • 2010

Similar Papers

Loading similar papers…