The Schwarz genus of the Stiefel manifold

@article{Blagojevic2013TheSG,
  title={The Schwarz genus of the Stiefel manifold},
  author={P. Blagojevic and R. Karasev},
  journal={Topology and its Applications},
  year={2013},
  volume={160},
  pages={2340-2350}
}
  • P. Blagojevic, R. Karasev
  • Published 2013
  • Mathematics
  • Topology and its Applications
  • Abstract In this paper we compute: the Schwarz genus of the Stiefel manifold V k ( R n ) with respect to the action of the Weyl group W k : = ( Z / 2 ) k ⋊ S k , and the Lusternik–Schnirelmann category of the quotient space V k ( R n ) / W k . Furthermore, these results are used in estimating the number of critically outscribed parallelotopes around a strictly convex body, and Birkhoff–James orthogonal bases of a normed finite dimensional vector space. 
    3 Citations
    Ju l 2 01 7 Orthogonality in Generalized Minkowski Spaces
    Orthogonality in Generalized Minkowski Spaces
    • 6
    • PDF

    References

    SHOWING 1-10 OF 11 REFERENCES
    The genus and the category of configuration spaces
    • 13
    • PDF
    Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards
    • 37
    • PDF
    Topology of billiard problems, II
    • 19
    • Highly Influential
    • PDF
    On the index of G-spaces
    • 31
    Equivariant Topology of Configuration Spaces
    • 20
    • PDF
    A simple triangulation method for smooth manifolds
    • 63
    • PDF
    Topological Methods for Variational Problems With Symmetries
    • 146
    Lusternik-Schnirelmann category
    • 103
    Periodic Billiard Trajectories in Smooth Convex Bodies
    • 8
    • PDF