The Scaling Limit for Zero-Temperature Planar Ising Droplets: With and Without Magnetic Fields
@article{Lacoin2014TheSL, title={The Scaling Limit for Zero-Temperature Planar Ising Droplets: With and Without Magnetic Fields}, author={Hubert Lacoin}, journal={arXiv: Probability}, year={2014}, pages={85-120} }
We consider the continuous time, zero-temperature heat-bath dynamics for the nearest-neighbor Ising model on $Z^2$ with positive magnetic field. For a system of size $L\in N$, we start with initial condition $\sigma$ such that $\sigma_x=-1$ if $x\in[-L,L]^2$ and $\sigma_x=+1$ and investigate the scaling limit of the set of $-$ spins when both time and space are rescaled by $L$. We compare the obtained result and its proof with the case of zero-magnetic fields, for which a scaling result was…
3 Citations
The Heat Equation Shrinks Ising Droplets to Points
- Mathematics
- 2013
Let D be a bounded, smooth enough domain of ℝ2. For L > 0 consider the continuous‐time, zero‐temperature heat bath stochastic dynamics for the nearest‐neighbor Ising model on (ℤ/L)2 (the square…
COARSENING MODEL ON Z WITH BIASED ZERO-ENERGY FLIPS AND AN EXPONENTIAL LARGE DEVIATION BOUND FOR ASEP
- Mathematics
- 2021
We study the coarsening model (zero-temperature Ising Glauber dynamics) on Zd (for d ≥ 2) with an asymmetric tie-breaking rule. This is a Markov process on the state space {−1,+1}Zd of “spin…
Coarsening Model on $${\mathbb{Z}^{d}}$$Zd with Biased Zero-Energy Flips and an Exponential Large Deviation Bound for ASEP
- MathematicsCommunications in Mathematical Physics
- 2018
We study the coarsening model (zero-temperature Ising Glauber dynamics) on $${\mathbb{Z}^{d}}$$Zd (for $${d \geq 2}$$d≥2) with an asymmetric tie-breaking rule. This is a Markov process on the state…
References
SHOWING 1-10 OF 35 REFERENCES
Zero-temperature 2D Ising model and anisotropic curve-shortening flow
- Mathematics
- 2011
Let $\DD$ be a simply connected, smooth enough domain of $\bbR^2$. For $L>0$ consider the continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on $\mathbb Z^2$…
The Heat Equation Shrinks Ising Droplets to Points
- Mathematics
- 2013
Let D be a bounded, smooth enough domain of ℝ2. For L > 0 consider the continuous‐time, zero‐temperature heat bath stochastic dynamics for the nearest‐neighbor Ising model on (ℤ/L)2 (the square…
Approximate Lifshitz Law for the Zero-Temperature Stochastic Ising Model in any Dimension
- Mathematics
- 2011
We study the Glauber dynamics for the zero-temperature stochastic Ising model in dimension d ≥ 4 with “plus” boundary condition. Let $${\mathcal{T}_+}$$ be the time needed for an hypercube of size L…
“Zero” temperature stochastic 3D ising model and dimer covering fluctuations: A first step towards interface mean curvature motion
- Mathematics
- 2010
We consider the Glauber dynamics for the Ising model with “+” boundary conditions, at zero temperature or at a temperature that goes to zero with the system size (hence the quotation marks in the…
The Scaling Limit of Polymer Pinning Dynamics and a One Dimensional Stefan Freezing Problem
- Mathematics, Physics
- 2012
We consider the stochastic evolution of a 1 + 1-dimensional interface (or polymer) in the presence of a substrate. This stochastic process is a dynamical version of the homogeneous pinning model. We…
Quasi-polynomial mixing of the 2D stochastic Ising model with
- Mathematics
- 2010
We considerably improve upon the recent result of Martinelli and Toninelli on the mixing time of Glauber dynamics for the 2D Ising model in a box of side $L$ at low temperature and with random…
Crystal statistics. I. A two-dimensional model with an order-disorder transition
- Materials Science
- 1944
The partition function of a two-dimensional "ferromagnetic" with scalar "spins" (Ising model) is computed rigorously for the case of vanishing field. The eigenwert problem involved in the…
Cutoff for the Ising model on the lattice
- Mathematics
- 2013
Introduced in 1963, Glauber dynamics is one of the most practiced and extensively studied methods for sampling the Ising model on lattices. It is well known that at high temperatures, the time it…
Lifshitz' law for the volume of a two-dimensional droplet at zero temperature
- Physics
- 1995
We study a simple model of the zero-temperature stochastic dynamics for interfaces in two dimensions-essentially Glauber dynamics of the two-dimensional Ising model atT=0. Using elementary geometric…
The Initial Drift of a 2D Droplet at Zero Temperature
- Mathematics
- 2004
We consider the 2D stochastic Ising model evolving according to the Glauber dynamics at zero temperature. We compute the initial drift for droplets which are suitable approximations of smooth…