The Quaternions and Bott Periodicity Are Quantum Hamiltonian Reductions

@article{JohnsonFreyd2016TheQA,
  title={The Quaternions and Bott Periodicity Are Quantum Hamiltonian Reductions},
  author={T. Johnson-Freyd},
  journal={Symmetry Integrability and Geometry-methods and Applications},
  year={2016},
  volume={12},
  pages={116}
}
  • T. Johnson-Freyd
  • Published 2016
  • Mathematics, Physics
  • Symmetry Integrability and Geometry-methods and Applications
  • We show that the Morita equivalences $\mathrm{Cliff}(4) \simeq {\mathbb H}$, $\mathrm{Cliff}(7) \simeq \mathrm{Cliff}(-1)$, and $\mathrm{Cliff}(8) \simeq {\mathbb R}$ arise from quantizing the Hamiltonian reductions ${\mathbb R}^{0|4} // \mathrm{Spin}(3)$, ${\mathbb R}^{0|7} // G_2$, and ${\mathbb R}^{0|8} // \mathrm{Spin}(7)$, respectively. 
    Galois action on VOA gauge anomalies

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 13 REFERENCES
    Reduction of symplectic manifolds with symmetry
    • 1,183
    Quantum Fields and Strings: A Course for Mathematicians
    • 657
    • PDF
    Some remarks on G2-structures
    • 222
    Some remarks on G_2-structures
    • 89
    • PDF
    Calibrated geometries
    • 757
    • PDF
    A Supergeometric Approach to Poisson Reduction
    • 13
    • PDF
    Constructing a Matrix Representation of the Lie Group G2
    • 7
    Nombres complexes (Exposé
    • 1908