The Procrustes Problem for Orthogonal Stiefel Matrices

  title={The Procrustes Problem for Orthogonal Stiefel Matrices},
  author={Adam W. Bojanczyk and Adam Lutoborski},
  journal={SIAM J. Scientific Computing},
In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. Given matrices A 2 R mk , B 2 R mp , m p k, we seek the minimum of kA?BQk 2 for all matrices Q 2 R pk , Q T Q = I kk. We introduce a class of relaxation methods for generating minimizing sequences and ooer a geometric interpretation of these methods. Results of numerical experiments illustrating the convergence of the methods are given. 

From This Paper

Topics from this paper.


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 14 references

Geometrical Methods in the Theory of Ordinary Di erential Equations

  • V. I. Arnold
  • Springer-Verlag, New York
  • 1988
Highly Influential
10 Excerpts

A general solution to Mosier's oblique Procrustes problem

  • J. M. Ten Berge, K. Nevels
  • Psychometrika 42
  • 1977
Highly Influential
10 Excerpts

Orthogonal rotations to maximal agreement for two or more matrices of di erent column orders

  • J. M. Ten Berge, D. L. Knol
  • Psychometrika 49
  • 1984
Highly Influential
4 Excerpts

On the convergence of the Euler-Jacobi method

  • A. Lutoborski
  • Numer. Funct. Anal. and Optimiz. 13
  • 1992
1 Excerpt

Quadratically constrained least squares and quadratic problems, Numer. Math

  • G. H. Golub, U. von Matt
  • 1991
1 Excerpt

Least Squares with a Quadratic Constraint

  • W. Gander
  • Numer. Math. 36
  • 1981
1 Excerpt

Algorithms for the regularization of ill-conditioned least squares problems

  • L. Elden
  • BIT 17
  • 1977
1 Excerpt

Quadratically constrained least squares and quadratic problems

  • U. von Matt
  • SIAM Review
  • 1973

Some modi ed matrix eigenvalue problems

  • G. H. Golub
  • SIAM Review 15
  • 1973
1 Excerpt

Similar Papers

Loading similar papers…