The NP-Completeness of the bandwidth minimization problem

  title={The NP-Completeness of the bandwidth minimization problem},
  author={Christos H. Papadimitriou},
The Problem of minimizing the bandwidth of the nonzero entries of a sparse symmetric matrix by permuting its rows and columns and some related combinatorial problems are shown to be NP-Complete. Es wird gezeigt, daß das Problem, die minimale Bandbreite der von Null verschiedenen Elemente einer schwach besetzten symmetrischen Matrix durch Umstellung der Reihen und Spalten zu finden, und einige verwandte Probleme der Kombinatorik NP-geschlossene sind. 
Highly Influential
This paper has highly influenced 19 other papers. REVIEW HIGHLY INFLUENTIAL CITATIONS

From This Paper

Figures, tables, and topics from this paper.


Publications citing this paper.
Showing 1-10 of 160 extracted citations

On the k-Atomicity-Verification Problem

2013 IEEE 33rd International Conference on Distributed Computing Systems • 2013
View 8 Excerpts
Highly Influenced

How To Color A Map

View 20 Excerpts
Highly Influenced

On the bandwidth of the Kneser graph

Discrete Applied Mathematics • 2017
View 5 Excerpts
Highly Influenced

Antibandwidth of Bipartite Graphs

View 4 Excerpts
Highly Influenced


Publications referenced by this paper.
Showing 1-9 of 9 references

Minimizing ihe Bandwidth of Sparse Symmetric Matrices

K. Y. Chen
Computing 11, • 1973
View 2 Excerpts

Sparse Matrices. Chapter 3.8

R. P. Tewarson
View 1 Excerpt

Reducibility Among Combinatorial Problems

Complexity of Computer Computations • 1972
View 2 Excerpts

Several Strategies for Reducing the Bandwidth of Matrices, in: Sparse Matrices and their Applications

E. Cuthill
View 1 Excerpt

Sparse Matrices in Graph Theory, in: Large Sparse Sets of Linear Equations (Reidl

F. Harary
J. K., • 1970
View 1 Excerpt

Similar Papers

Loading similar papers…