The Microscopic Spectral Density of the Dirac Operator derived from Gaussian Orthogonal and Symplectic Ensembles

@inproceedings{HilmoineTheMS,
  title={The Microscopic Spectral Density of the Dirac Operator derived from Gaussian Orthogonal and Symplectic Ensembles},
  author={Christian Hilmoine and Rune Niclasen}
}
The microscopic spectral correlations of the Dirac operator in Yang-Mills theories coupled to fermions in (2+1) dimensions can be related to three universality classes of Random Matrix Theory. In the microscopic limit the Orthogonal Ensemble (OE) corresponds to a theory with 2 colors and fermions in the fundamental representation and the Symplectic Ensemble (SE) corresponds to an arbitrary number of colors and fermions in the adjoint representation. Using a new method of Widom, we derive an… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-5 of 5 references

Random Matrices, 2nd Edition

  • M. L. Mehta
  • 1991
Highly Influential
3 Excerpts

Widom : Correlation Functions , Cluster Functions and Spacing Distribibutions for Random Matrices

  • H.
  • J . Statist . Phys .
  • 1999

Verbaarschot : Universal Behavior in Dirac Spectra , hep - th / 9710114 . [ 16 ] J . Christiansen

  • M. L. Mehta
  • 1998

Orthogonal Polynomials, 4th ed

  • G. Szego
  • Am. Math. Soc.,Providence,
  • 1975
2 Excerpts

: Random Matrices , 2 nd Edition , Academic Press ( 1991 ) . [ 19 ] H . Widom

  • F. Oberhettinger W. Magnus
  • J . Statist . Phys .

Similar Papers

Loading similar papers…