The Maslov Index as a Quadratic Space

@inproceedings{Thomas2006TheMI,
  title={The Maslov Index as a Quadratic Space},
  author={Teruji Thomas},
  year={2006}
}
Kashiwara defined the Maslov index (associated to a collection of Lagrangian subspaces of a symplectic vector space over a field F ) as a class in the Witt group W (F ) of quadratic forms. We construct a canonical quadratic vector space in this class and show how to understand the basic properties of the Maslov index without passing to W (F )—that is, more or less, how to upgrade Kashiwara’s equalities in W (F ) to canonical isomorphisms between quadratic spaces. The quadratic space is defined… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.
4 Citations
9 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Grothendieck-Witt groups of triangulated categories.

  • C. Walter
  • Preprint, July
  • 2003

La semi-caractéristique d’Euler-Poincaré des faisceaux ω-quadratiques sur un schéma de Cohen-Macaulay.

  • C. Sorger
  • Bull. Soc. Math. France
  • 1994

On the Maslov Index.

  • S. Cappell, R. Lee, E. Miller
  • Comm. Pure Appl. Math
  • 1994

On some explicit formulas in the theory of Weil representations.

  • R. Ranga Rao
  • Pacific J. Math
  • 1993

Deformations of Semi-Euler Characteristics.

  • G. Kempf
  • American J. of Math
  • 1992

Sheaves on Manifolds

  • M. Kashiwara, P. Schapira
  • Berlin; New York: Springer
  • 1990
1 Excerpt

Représentations de Schrödinger

  • P. Perrin
  • indice de Maslov et groupe metaplectique.” Non…
  • 1981
1 Excerpt

Indice de Maslov et représentation de Weil.” Trois textes sur les representations des groupes nilpotents et resolubles

  • G. Lion
  • Publications Mathématiques de l’Universite…
  • 1978

Construction explicite de l’indice de Maslov

  • J.-M. Souriau
  • applications.” Group Theoretical Methods in…
  • 1976
1 Excerpt

Similar Papers

Loading similar papers…