The Legendre-Stirling numbers

@article{Andrews2011TheLN,
  title={The Legendre-Stirling numbers},
  author={George E. Andrews and Wolfgang Gawronski and Lance L. Littlejohn},
  journal={Discrete Mathematics},
  year={2011},
  volume={311},
  pages={1255-1272}
}
The Legendre-Stirling numbers are the coeffi cients in the integral Lagrangian symmetric powers of the classical Legendre second-order differential expression. In many ways, these numbers mimic the classical Stirling numbers of the second kind which play a similar role in the integral powers of the classical second-order Laguerre differential expression. In a recent paper, Andrews and Littlejohn gave a combinatorial interpretation of the Legendre-Stirling numbers. In this paper, we establish… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Advanced combinatorics: the art of finite and infinite expansions, D

  • L. Comtet
  • 1974
Highly Influential
6 Excerpts

Legendre polynomials

  • W. N. Everitt, L. L. Littlejohn, R. Wellman
  • Legendre-Stirling numbers, and the leftdefinite…
  • 2002
Highly Influential
6 Excerpts

A general left-definite theory for certain self-adjoint operators with applications to differential equations

  • L. L. Littlejohn, R. Wellman
  • J. Differential Equations, 181
  • 2002
Highly Influential
5 Excerpts

The left-definite spectral analysis of the Legendre type differential equation, Ph.D

  • Davut Tuncer
  • 2009
1 Excerpt

Jacobi-Stirling numbers

  • W. N. Everitt, K. H. Kwon, L. L. Littlejohn, R. Wellman, G. J. Yoon
  • Jacobi polynomials, and the left-definite…
  • 2007
1 Excerpt

Legendre polynomials , Legendre - Stirling numbers , and the left - definite spectral analysis of the Legendre differential expression

  • L. L. Littlejohn, R. Wellman
  • J . Comput . Appl . Math .
  • 2002

The left-definite spectral theory for the classical Hermite differential equation

  • W. N. Everitt, L. L. Littlejohn, R. Wellman
  • J. Comput. Appl. Math. 121
  • 2000
3 Excerpts

Similar Papers

Loading similar papers…