The Lefschetz–Lunts formula for deformation quantization modules

@article{Petit2013TheLF,
  title={The Lefschetz–Lunts formula for deformation quantization modules},
  author={François Petit},
  journal={Mathematische Zeitschrift},
  year={2013},
  volume={273},
  pages={1119-1138}
}
  • François Petit
  • Published 2013
  • Mathematics
  • Mathematische Zeitschrift
  • We adapt to the case of deformation quantization modules a formula of Lunts (Lefschetz fixed point theorems for Fourier–Mukai functors and DG algebras. arXiv:1102.2884. ArXiv e-prints, 2011) who calculates the trace of a kernel acting on the Hochschild homology of a DQ-algebroid. 
    On the triangulated category of DQ-modules

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 18 REFERENCES
    Lefschetz and Hirzebruch-Riemann-Roch formulas via noncommutative motives
    • 10
    • Highly Influential
    • PDF
    Lefschetz fixed point theorems for Fourier-Mukai functors and DG algebras
    • 13
    • Highly Influential
    • PDF
    Deformation Quantization Modules
    • 82
    • Highly Influential
    • PDF
    Hirzebruch-Riemann-Roch-type formula for DG algebras
    • 56
    • Highly Influential
    • PDF
    The Mukai pairing, I: a categorical approach
    • 81
    • PDF
    Lefschetz type formulas for dg-categories
    • 15
    • Highly Influential
    • PDF
    Deformation Quantization of Algebraic Varieties
    • 159
    • PDF
    Equivariant Stable Homotopy Theory
    • 528
    Traces in symmetric monoidal categories
    • 24
    • PDF
    Categories and Sheaves
    • 439