The Kolmogorov-Smirnov Test for Goodness of Fit

@article{Massey1951TheKT,
  title={The Kolmogorov-Smirnov Test for Goodness of Fit},
  author={F. J. Massey},
  journal={Journal of the American Statistical Association},
  year={1951},
  volume={46},
  pages={68-78}
}
  • F. J. Massey
  • Published 1951
  • Mathematics
  • Journal of the American Statistical Association
  • Abstract The test is based on the maximum difference between an empirical and a hypothetical cumulative distribution. Percentage points are tabled, and a lower bound to the power function is charted. Confidence limits for a cumulative distribution are described. Examples are given. Indications that the test is superior to the chi-square test are cited. 
    3,827 Citations

    References

    SHOWING 1-10 OF 11 REFERENCES
    On the Kolmogorov–Smirnov Limit Theorems for Empirical Distributions
    • 237
    Non-parametric Statistical Inference
    • 176
    • PDF
    The Monte Carlo method.
    • 3,666
    A Note on the Power of a Non-Parametric Test
    • 57
    Heuristic Approach to the Kolmogorov-Smirnov Theorems
    • 414
    Table for Estimating the Goodness of Fit of Empirical Distributions
    • 1,274
    Statistical Inference in the Non-Parametric Case
    • 80