The JordanâChevalley decomposition for đș-bundles on elliptic curves
@article{Fruactilua2020TheJD, title={The JordanâChevalley decomposition for đș-bundles on elliptic curves}, author={Dragocs Fruactilua and Sam Gunningham and Penghui Li}, journal={Representation Theory of the American Mathematical Society}, year={2020} }
<p>We study the moduli stack of degree <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0">
<mml:semantics>
<mml:mn>0</mml:mn>
<mml:annotation encoding="application/x-tex">0</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> semistable <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G">
<mml:semantics>
<mml:mi>G</mml:mi>
<mmlâŠÂ
One Citation
Elliptic Genera of Pure Gauge Theories in Two Dimensions with Semisimple Non-Simply-Connected Gauge Groups
- MathematicsCommunications in Mathematical Physics
- 2021
In this paper we describe a systematic method to compute elliptic genera of (2,2) supersymmetric gauge theories in two dimensions with gauge group G/Î\documentclass[12pt]{minimal}âŠ
References
SHOWING 1-10 OF 60 REFERENCES
The HarderâNarasimhan stratification of the moduli stack of $$G$$G-bundles via Drinfeldâs compactifications
- Mathematics
- 2012
We use Drinfeldâs relative compactifications $${\overline{\mathop {{\mathrm{Bun}}}\nolimits }}_P$$BunÂŻP and the Tannakian viewpoint on principal bundles to construct the HarderâNarasimhanâŠ
Generalized Springer theory for D-modules on a reductive Lie algebra
- MathematicsSelecta Mathematica
- 2018
Given a reductive group G, we give a description of the abelian category of G-equivariant D-modules on $$\mathfrak {g}={{\mathrm{Lie}}}(G)$$g=Lie(G), which specializes to Lusztigâs generalizedâŠ
On the stack of semistable G-bundles over an elliptic curve
- Mathematics
- 2014
In a recent paper Ben-Zvi and Nadler proved that the induction map from B-bundles of degree 0 to semistable G-bundles of degree 0 over an elliptic curve is a small map with Galois group isomorphic toâŠ
On the Hall algebra of an elliptic curve, I
- Mathematics
- 2005
This paper is a sequel to math.AG/0505148, where the Hall algebra U^+_E of the category of coherent sheaves on an elliptic curve E defined over a finite field was explicitly described, and shown toâŠ
A Derived Decomposition for Equivariant $D$-modules
- Mathematics
- 2017
We show that the $G$-equivariant coherent derived category of $D$-modules on $\mathfrak{g}$ admits an orthogonal decomposition in to blocks indexed by cuspidal data (in the sense of Lusztig). EachâŠ
Moduli of representations of the fundamental group of a smooth projective variety I
- Mathematics
- 1994
© Publications mathĂ©matiques de lâI.H.Ă.S., 1994, tous droits rĂ©servĂ©s. LâaccĂšs aux archives de la revue « Publications mathĂ©matiques de lâI.H.Ă.S. » (http://âŠ
Cusp eigenforms and the hall algebra of an elliptic curve
- MathematicsCompositio Mathematica
- 2013
Abstract We give an explicit construction of the cusp eigenforms on an elliptic curve defined over a finite field, using the theory of Hall algebras and the Langlands correspondence for functionâŠ
Betti Geometric Langlands
- MathematicsAlgebraic Geometry: Salt Lake City 2015
- 2018
We introduce and survey a Betti form of the geometric Langlands conjecture, parallel to the de Rham form developed by Beilinson-Drinfeld and Arinkin-Gaitsgory, and the Dolbeault form ofâŠ
A spectral incarnation of affine character sheaves
- MathematicsCompositio Mathematica
- 2017
We present a Langlands dual realization of the putative category of affine character sheaves. Namely, we calculate the categorical center and trace (also known as the Drinfeld center and trace, orâŠ