The Jordan–Chevalley decomposition for đș-bundles on elliptic curves

@article{Fruactilua2020TheJD,
  title={The Jordan–Chevalley decomposition for đș-bundles on elliptic curves},
  author={Dragocs Fruactilua and Sam Gunningham and Penghui Li},
  journal={Representation Theory of the American Mathematical Society},
  year={2020}
}
<p>We study the moduli stack of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> semistable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml
 

Elliptic Genera of Pure Gauge Theories in Two Dimensions with Semisimple Non-Simply-Connected Gauge Groups

In this paper we describe a systematic method to compute elliptic genera of (2,2) supersymmetric gauge theories in two dimensions with gauge group G/Γ\documentclass[12pt]{minimal}


References

SHOWING 1-10 OF 60 REFERENCES

Uniformization of semistable bundles on elliptic curves

The Harder–Narasimhan stratification of the moduli stack of $$G$$G-bundles via Drinfeld’s compactifications

We use Drinfeld’s relative compactifications $${\overline{\mathop {{\mathrm{Bun}}}\nolimits }}_P$$Bun¯P and the Tannakian viewpoint on principal bundles to construct the Harder–Narasimhan


Generalized Springer theory for D-modules on a reductive Lie algebra

Given a reductive group G, we give a description of the abelian category of G-equivariant D-modules on $$\mathfrak {g}={{\mathrm{Lie}}}(G)$$g=Lie(G), which specializes to Lusztig’s generalized


On the stack of semistable G-bundles over an elliptic curve

In a recent paper Ben-Zvi and Nadler proved that the induction map from B-bundles of degree 0 to semistable G-bundles of degree 0 over an elliptic curve is a small map with Galois group isomorphic to


On the Hall algebra of an elliptic curve, I

This paper is a sequel to math.AG/0505148, where the Hall algebra U^+_E of the category of coherent sheaves on an elliptic curve E defined over a finite field was explicitly described, and shown to


A Derived Decomposition for Equivariant $D$-modules

We show that the $G$-equivariant coherent derived category of $D$-modules on $\mathfrak{g}$ admits an orthogonal decomposition in to blocks indexed by cuspidal data (in the sense of Lusztig). Each


Moduli of representations of the fundamental group of a smooth projective variety I

© Publications mathĂ©matiques de l’I.H.É.S., 1994, tous droits rĂ©servĂ©s. L’accĂšs aux archives de la revue « Publications mathĂ©matiques de l’I.H.É.S. » (http://


Cusp eigenforms and the hall algebra of an elliptic curve

Abstract We give an explicit construction of the cusp eigenforms on an elliptic curve defined over a finite field, using the theory of Hall algebras and the Langlands correspondence for function


Betti Geometric Langlands

We introduce and survey a Betti form of the geometric Langlands conjecture, parallel to the de Rham form developed by Beilinson-Drinfeld and Arinkin-Gaitsgory, and the Dolbeault form of


A spectral incarnation of affine character sheaves

We present a Langlands dual realization of the putative category of affine character sheaves. Namely, we calculate the categorical center and trace (also known as the Drinfeld center and trace, or

...