Corpus ID: 15371489

The Intersection Conics of Six Straight Lines

@inproceedings{Schrcker2005TheIC,
  title={The Intersection Conics of Six Straight Lines},
  author={H. Schr{\"o}cker},
  year={2005}
}
We investigate and visualize the manifold M of planes that intersect six straight lines of real projective three space in points of a conic section. It is dual to the apex-locus of the cones of second order that have six given tangents. In general M is algebraic of dimension two and class eight. It has 30 single and six double lines. We consider special cases, derive an algebraic equation of the manifold and give an ecient algorithm for the computation of solution planes. 

Figures from this paper

Conic sections in space defined by intersection conditions.
We investigate and visualize the set of planes in complex projective three-space P 3 that intersect m conics Ci and n = 6 2m straight lines Lj in a total of six points of a conic. The solutionExpand
The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle
In this text, we study the set L of planes in three-dimensional euclidean space E3 that intersect four straight lines in points of a circle. The manifold of solution planes L is, in general, ofExpand
3D reconstruction with uncalibrated cameras using the six-line conic variety
We present new algorithms for the recovery of the Euclidean structure from a projective calibration of a set of cameras with square pixels but otherwise arbitrarily varying intrinsic and extrinsicExpand
Autocalibration with the Minimum Number of Cameras with Known Pixel Shape
TLDR
This work proposes an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint, and introduces the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. Expand

References

SHOWING 1-10 OF 21 REFERENCES
Congruence of circular cylinders on three given points
A method to determine the two parameter set of circular cylinders, whose surfaces contain three given points, is presented in the context of an efficient algorithm, based on the set of two parameterExpand
Generatrices of rational curves
Abstract. We investigate the one-parametric set $ \mathbb{G} $ of projective subspaces that is generated by a set of rational curves in projective relation. The main theorem connects the algebraicExpand
Die von drei projektiv gekoppelten Kegelschnitten erzeugte Ebenenmenge
  • Ph.D.-Thesis, Technical University Graz,
  • 2000
Die von drei projektiv gekoppelten Kegelschnitten erzeugte Ebenenmenge
  • Die von drei projektiv gekoppelten Kegelschnitten erzeugte Ebenenmenge
  • 2000
Drehkegel des zweifach isotropen Raumes durch vier gegebene Punkte
  • Stud. Scie. Mathem. Hungarica
  • 1995
Drehkegel des zweifach isotropen Raumes durch vier gegebene Punkte
  • Stud. Scie. Mathem. Hungarica
  • 1995
Die gefährlichen Örter der Pseudostreckenortung
  • Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover,
  • 1993
Die gefährlichengefährlichen¨ gefährlichen¨Orter der Pseudostreckenortung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover
  • Die gefährlichengefährlichen¨ gefährlichen¨Orter der Pseudostreckenortung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover
  • 1993
Die gefährlichenÖrter der Pseudostreckenortung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover
  • 1993
Wiss
  • Wiss
  • 1991
...
1
2
3
...