The IAP family: endogenous caspase inhibitors with multiple biological activities

Abstract

ABSTRACTIAPs (inhibitors of apoptosis) are a family of proteins containing one or more characteristic BIR domains. These proteins have multiple biological activities that include binding and inhibiting caspases, regulating cell cycle progression, and modulating receptor-mediated signal transduction. Our recent studies found the IAP family members XIAP and c-IAP1 are ubiquitinated and degraded in proteasomes in response to apoptotic stimuli in T cells, and their degradation appears to be important for T cells to commit to death. In addition to three BIR domains, each of these IAPs also contains a RING finger domain. We found this region confers ubiquitin protease ligase (E3) activity to IAPs, and is responsible for the auto-ubiquitination and degradation of IAPs after an apoptotic stimulus. Given the fact that IAPs can bind a variety of proteins, such as caspases and TRAFs, it will be of interest to characterize potential substrates of the E3 activity of IAPs and the effects of ubiquitination by IAPs on signal transduction, cell cycle, and apoptosis.

DOI: 10.1038/sj.cr.7290046
050100'02'04'06'08'10'12'14'16
Citations per Year

692 Citations

Semantic Scholar estimates that this publication has 692 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Yang2000TheIF, title={The IAP family: endogenous caspase inhibitors with multiple biological activities}, author={Yi Yang and Xiao Ming Li}, journal={Cell Research}, year={2000}, volume={10}, pages={169-177} }