The Honeycomb Conjecture

  title={The Honeycomb Conjecture},
  author={Thomas C. Hales},
  journal={Discrete & Computational Geometry},
This article gives a proof of the classical honeycomb conjecture: any partition of the plane into regions of equal area has perimeter at least that of the regular hexagonal honeycomb tiling. 
Recent Discussions
This paper has been referenced on Twitter 2 times over the past 90 days. VIEW TWEETS

From This Paper

Topics from this paper.


Publications citing this paper.


Publications referenced by this paper.
Showing 1-8 of 8 references

Generalisations of the Kelvin problem and other minimal problems

  • R. Phelan
  • [W2]
  • 1996
1 Excerpt

The shortest enclosure of three connected areas in R 2 ,

  • L. Harrison C. Cox, M. Hutchings, S. Kim, J. Light, A. Mauer, M. Tilton
  • Real Anal . Exchange
  • 1991

On Agriculture

  • M. T. Varro
  • Loeb Classical Library
  • 1934
1 Excerpt

Existence and regularity of almost everywhere of solutions to elliptic variational problems with constraints

  • K. Bezdek, R. Connelly
  • Mem . Amer . Math . Soc .

The structure of singularities in soapbubblelike and soapfilmlike minimal surfaces

  • J. Taylor

Über das k ̈ urzeste Kurvennetz das eine Kugeloberfl ̈ ache in flächengleiche konvexe Teil zerlegt , Mat . Term .tud

  • L. Fejes Tóth
  • Értesiẗo

Similar Papers

Loading similar papers…