The Hermitian Laplace Operator on Nearly Kähler Manifolds

  title={The Hermitian Laplace Operator on Nearly K{\"a}hler Manifolds},
  author={Andrei Moroianu and Uwe Semmelmann},
The moduli space NK of infinitesimal deformations of a nearly Kähler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1, 1) forms (c.f. [10]). Using the Hermitian Laplace operator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kähler manifolds. It turns out that the nearly Kähler structure is rigid except for the flag manifold F (1, 2) = SU3/T , which carries… CONTINUE READING

From This Paper

Topics from this paper.
2 Citations
13 References
Similar Papers


Publications citing this paper.
Showing 1-2 of 2 extracted citations


Publications referenced by this paper.
Showing 1-10 of 13 references

Nearly Kähler and nearly parallel G2-structures on spheres

  • Th. Friedrich
  • Arch. Math. (Brno)
  • 2006
1 Excerpt

Classification des variétés approximativement kähleriennes homogènes

  • J.-B. Butruille
  • Ann. Global Anal. Geom. 27
  • 2005
1 Excerpt

Einstein metrics via intrinsic or parallel torsion

  • R. Cleyton, A. Swann
  • Math. Z. 247
  • 2004

Nearly Kähler geometry and Riemannian foliations

  • P.-A. Nagy
  • Asian J. Math. 3
  • 2002
1 Excerpt

Moroianu , Nearly Kähler 6manifolds with reduced holonomy

  • A. F. Belgun
  • Ann . Global Anal . Geom .
  • 2001

Nearly Kähler 6-manifolds with reduced holonomy

  • F. Belgun, A. Moroianu
  • Ann. Global Anal. Geom. 19
  • 2001
1 Excerpt


  • H. Baum
  • Friedrich, R. Grunewald, I. Kath, Twistor and…
  • 1991
1 Excerpt

Similar Papers

Loading similar papers…