The Hausdorff Dimension of the Level Sets of Stable Processes in Random Scenery ∗

@inproceedings{Xiao2002TheHD,
  title={The Hausdorff Dimension of the Level Sets of Stable Processes in Random Scenery ∗},
  author={Yimin Xiao},
  year={2002}
}
Let X(t) (t ∈ R+) be a stable process in a random scenery. The Hausdorff dimension of certain level sets is determined and the existence of the local time of X(t) is proved. AMS Subject Classification (1991): 60G17, 60G18. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 14 references

Inequalities for increments of stochastic processes and moduli of continuity

  • E. Csáki, M. Csörgő
  • Ann. Probab. 20
  • 1992
Highly Influential
4 Excerpts

Some Random Series of Functions

  • J-P. Kahane
  • 2nd edition, Cambridge University Press
  • 1985
Highly Influential
6 Excerpts

Occupation densities

  • D. Geman, J. Horowitz
  • Ann. Probab. 8
  • 1980
Highly Influential
3 Excerpts

Gaussian processes with stationary increments: local times and sample function properties

  • S. M. Berman
  • Ann. Math. Statist. 41
  • 1970
Highly Influential
6 Excerpts

Some properties of a special class of self-similar processes

  • J. H. Lou
  • Z. Wahrsch. verw. Gebiete 68
  • 1985
1 Excerpt

A limit theorem related to a new class of self-similar processes

  • H. Kesten, F. Spitzer
  • Z. Wahrsch. verw. Gebiete 50
  • 1979
2 Excerpts

Capacity of level sets of certain stochastic processes

  • M. B. Marcus
  • Z. Wahrsch. verw. Gebiete 34
  • 1976
2 Excerpts

Similar Papers

Loading similar papers…