# The Grothendieck-Teichmueller Lie algebra and Brown's dihedral moduli spaces

@article{Alm2018TheGL, title={The Grothendieck-Teichmueller Lie algebra and Brown's dihedral moduli spaces}, author={J. Alm}, journal={arXiv: Quantum Algebra}, year={2018} }

We prove that the degree zero Hochschild-type cohomology of the homology operad of Francis Brown's dihedral moduli spaces is equal to the Grothendieck-Teichmueller Lie algebra plus two classes. This significantly elucidates the (in part still conjectural) relation between the Grothendieck-Teichmueller Lie algebra and (motivic) multiple zeta values.

## Figures from this paper

## One Citation

### Invariant Differential Forms on Complexes of Graphs and Feynman Integrals

- MathematicsSymmetry, Integrability and Geometry: Methods and Applications
- 2021

We study differential forms on an algebraic compactification of a moduli space of metric graphs. Canonical examples of such forms are obtained by pulling back invariant differentials along a tropical…

## References

SHOWING 1-10 OF 16 REFERENCES

### Brown's moduli spaces of curves and the gravity operad

- Mathematics
- 2015

This paper is built on the following observation: the purity of the mixed Hodge structure on the cohomology of Brown's moduli spaces is essentially equivalent to the freeness of the dihedral operad…

### Operads and Moduli Spaces of Genus 0 Riemann Surfaces

- Mathematics
- 1995

In this paper, we study two dg (differential graded) operads related to the homology of moduli spaces of pointed algebraic curves of genus 0. These two operads are dual to each other, in the sense of…

### Operads and Motives in Deformation Quantization

- Mathematics
- 1999

The algebraic world of associative algebras has many deep connections with the geometric world of two-dimensional surfaces. Recently, D. Tamarkin discovered that the operad of chains of the little…

### A Universal A∞ Structure on BV Algebras with Multiple Zeta Value Coefficients

- Mathematics
- 2016

We construct an explicit and universal A-infinity deformation of Batalin-Vilkovisky algebras, with all coefficients expressed as rational sums of multiple zeta values. If the Batalin-Vilkovisky alg…

### Relative (non-)formality of the little cubes operads and the algebraic Cerf lemma

- Mathematics
- 2014

abstract:It is shown that the operad maps $E_n\to E_{n+k}$ are formal over the reals for $k\geq 2$ and non-formal for $k=1$. Furthermore we compute the homology of the deformation complex of the…

### Props of ribbon graphs, involutive Lie bialgebras and moduli spaces of curves M_g,n

- Mathematics
- 2015

We establish a new and surprisingly strong link between two previously unrelated theories: the theory of moduli spaces of curves Mg,n (which, according to Penner, is controlled by the ribbon graph…

### Mixed Tate motives over $\Z$

- Mathematics
- 2011

We prove that the category of mixed Tate motives over $\Z$ is spanned by the motivic fundamental group of $\Pro^1$ minus three points. We prove a conjecture by M. Hoffman which states that every…

### M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra

- Mathematics
- 2015

We show that the zeroth cohomology of M. Kontsevich’s graph complex is isomorphic to the Grothendieck–Teichmüller Lie algebra $$\mathfrak {{grt}}_1$$grt1. The map is explicitly described. This result…

### Brown's dihedral moduli space and freedom of the gravity operad

- Mathematics
- 2015

Francis Brown introduced a partial compactification $M_{0,n}^\delta$ of the moduli space $M_{0,n}$. We prove that the gravity cooperad, given by the degree-shifted cohomologies of the spaces…

### Pentagon and hexagon equations

- Mathematics
- 2007

The author will prove that Drinfel’d’s pentagon equation implies his two hexagon equations in the Lie algebra, pro-unipotent, pro-l and pro-nilpotent contexts.