The Frobenius and monodromy operators for curves and abelian varieties
@article{Coleman1997TheFA, title={The Frobenius and monodromy operators for curves and abelian varieties}, author={Robert F. Coleman and Adrian Iovita}, journal={Duke Mathematical Journal}, year={1997}, volume={97}, pages={171-215} }
In this paper, we give explicit descriptions of Hyodo and Kato's Frobenius and Monodromy operators on the first $p$-adic de Rham cohomology groups of curves and Abelian varieties with semi-stable reduction over local fields of mixed characteristic. This paper was motivated by the first author's paper "A $p$-adic Shimura isomorphism and periods of modular forms," where conjectural definitions of these operators for curves with semi-stable reduction were given.
72 Citations
Cohomology of discrete groups in harmonic cochains on buildings
- Mathematics
- 2003
Modules of harmonic cochains on the Bruhat-Tits building of the projective general linear group over ap-adic field were defined by one of the authors, and were shown to represent the cohomology of…
The p-adic monodromy-weight conjecture for p-adically uniformized varieties
- MathematicsCompositio Mathematica
- 2004
A p-adically uniformized variety is a smooth projective variety whose associated rigid analytic space admits a uniformization by Drinfeld's p-adic symmetric domain. For such a variety we prove the…
Formal sections and de Rham cohomology of semistable Abelian varieties
- Mathematics
- 2000
We give a geometric description of the unit root splitting of the Hodge filtration of the first de Rham cohomology of an ordinary Abelian variety over a local field, as the splitting determined by a…
p-adic iterated integration on semistable curves
- Mathematics
- 2022
We reformulate the theory of p-adic iterated integrals on semistable curves using the unipotent log rigid fundamental group. This fundamental group carries Frobenius and monodromy operators whose…
A monodromy criterion for the good reduction of $K3$ surfaces
- Mathematics
- 2020
We give a criterion for the good reduction of semistable K3 surfaces over p-adic fields. We use neither p-adic Hodge theory nor transcendental methods as in the analogous proofs of criteria for good…
On good reduction of some K3 surfaces related to abelian surfaces
- Mathematics
- 2015
The Neron--Ogg--Safarevic criterion for abelian varieties tells that whether an abelian variety has good reduction or not can be determined from the Galois action on its l-adic etale cohomology. We…
p-adic cohomology: from theory to practice
- Mathematics
- 2008
These notes (somewhat revised from the version presented at the 2007 AWS) present a few facets of the relationship between p-adic analysis, algebraic de Rham cohomology, and zeta functions of…
An Algebraic Description of the Monodromy of Log Curves
- Mathematics
- 2018
Let $k$ be an algebraically closed field of characteristic $0$. For a log curve $X/k^{\times}$ over the standard log point, we define (algebraically) a combinatorial monodromy operator on its log-de…
On p-adic invariant cycles theorem
- Mathematics
- 2012
For a proper semistable curve $X$ over a DVR of mixed characteristics we reprove the "invariant cycles theorem" with trivial coefficients (see Chiarellotto, 1999) i.e. that the group of elements…
References
SHOWING 1-10 OF 37 REFERENCES
p-Adic abelian integrals and commutative lie groups
- Mathematics
- 1996
The aim of this paper is to propose an ``elementary" approach to Coleman's theory of p-adic abelian integrals. Our main tool is a theory of commutative p-adic Lie groups (the logarithm map); we use…
Torsion points on curves and p-adic Abelian integrals
- Mathematics
- 1985
THEOREM A. Let f: C --* J be an Albanese morphism defined over a number field K, of a s-mooth curve of genus g into its Jacobian. Suppose J has potential complex multiplication. Let S denote the set…
Some consequences of the Riemann hypothesis for varieties over finite fields
- Mathematics
- 1974
We deduce from Deligne's form of the Riemann hypothesis and the hard Lefschetz theoreminl-adic cohomology the corresponding facts for any “reasonable” cohomology theory, in particular for crystalline…
Formal Cohomology: II. The Cohomology Sequence of a Pair
- Mathematics
- 1968
Now Grothendieck has shown that the cohomology of a complex variety may be defined algebraically; in particular if X is a complex affine variety the canonical map from the closed/exact algebraic…
Sur certains types de representations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate
- Mathematics
- 1982
1. Representations de Hodge-Tate 532 2. Construction du corps BDR 534 3. Representations de de Rham 545 4. L'anneau B 549 5. Representations cristallines et potentiellement cristallines .. 560 6.…
Periods and duality of $p$-adic Barsotti-Tate groups
- Mathematics
- 1995
L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions…
Reciprocity laws on curves
- Mathematics
- 1989
© Foundation Compositio Mathematica, 1989, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions…