The Feichtinger Conjecture for Reproducing Kernels

@inproceedings{Baranov2009TheFC,
  title={The Feichtinger Conjecture for Reproducing Kernels},
  author={Anton V. Baranov and Konstantin M. Dyakonov},
  year={2009}
}
We obtain two results concerning the Feichtinger conjecture for systems of normalized reproducing kernels in the model subspace KΘ = H 2 ⊖ ΘH of the Hardy space H, where Θ is an inner function. First, we verify the Feichtinger conjecture for the kernels k̃λn = kλn/‖kλn‖ under the assumption that sup n |Θ(λn)| < 1. Secondly, we prove the Feichtinger conjecture in the case where Θ is a one-component inner function, meaning that the set {z : |Θ(z)| < ε} is connected for some ε ∈ (0, 1). 

References

Publications referenced by this paper.
Showing 1-10 of 19 references

Embedding theorems for coinvariant subspaces of the shift operator

  • A. B. Aleksandrov
  • II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat…
  • 2002
Highly Influential
4 Excerpts

On the interpolation of bounded sequences by bounded functions

  • J. P. Earl
  • J. Lond. Math. Soc. 2
  • 1970
Highly Influential
3 Excerpts

Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings

  • A. D. Baranov
  • J. Funct. Anal. 223
  • 2005
1 Excerpt

Stability of bases and frames of reproducing kernels in model subspaces

  • A. D. Baranov
  • Ann. Inst. Fourier (Grenoble) 55
  • 2005
1 Excerpt

Operators

  • N. K. Nikolski
  • Functions, and Systems: an Easy Reading, Math…
  • 2002
1 Excerpt

Embedding theorems for star-invariant subspaces generated by smooth inner functions

  • K. M. Dyakonov
  • J. Funct. Anal. 157
  • 1998
1 Excerpt

Division and multiplication by inner functions and embedding theorems for star-invariant subspaces

  • K. M. Dyakonov
  • Amer. J. Math. 115
  • 1993
1 Excerpt

Similar Papers

Loading similar papers…