# The Erdős-Moser equation 1k+2k+...+(m-1)k=mk revisited using continued fractions

@article{Gallot2011TheEE,
title={The Erdős-Moser equation 1k+2k+...+(m-1)k=mk revisited using continued fractions},
author={Yves Gallot and Pieter Moree and Wadim Zudilin},
journal={Math. Comput.},
year={2011},
volume={80},
pages={1221-1237}
}
• Published 8 July 2009
• Mathematics, Computer Science
• Math. Comput.
If the equation of the title has an integer solution with $k\ge2$, then $m>10^{9.3\cdot10^6}$. This was the current best result and proved using a method due to L. Moser (1953). This approach cannot be improved to reach the benchmark $m>10^{10^7}$. Here we achieve $m>10^{10^9}$ by showing that $2k/(2m-3)$ is a convergent of $\log2$ and making an extensive continued fraction digits calculation of $(\log2)/N$, with $N$ an appropriate integer. This method is very different from that of Moser…
On the unsolvability of certain equations of Erdős–Moser type
Let $S_k(m):=\sum_{j=1}^{m-1}j^k$ denote a power sum. In 2011, Kellner proposed the conjecture that for $m>3$ the ratio $S_k(m+1)/S_k(m)$ is never an integer, or, equivalently, that for any positive
Moser's mathemagical work on the equation 1^k+2^k+...+(m-1)^k=m^k
If the equation of the title has an integer solution with k>=2, then m>10^{10^6}. Leo Moser showed this in 1953 by amazingly elementary methods. With the hindsight of more than 50 years his proof can
A congruence modulo $n^3$ involving two consecutive sums of powers and its applications
For various positive integers $k$, the sums of $k$th powers of the first $n$ positive integers, $S_k(n+1)=1^k+2^k+...+n^k$, have got to be some of the most popular sums in all of mathematics. In this
Primary Pseudoperfect Numbers, Arithmetic Progressions, and the Erdős-Moser Equation
• Mathematics
Am. Math. Mon.
• 2017
It is shown that K is congruent to 6 modulo 36 if 6 divides K, and a remarkable 7-term arithmetic progression of residues modulo 288 in the sequence of known PPNs is uncovered.
Forbidden Integer Ratios of Consecutive Power Sums
• Mathematics
• 2016
Let S k (m): = 1 k + 2 k + ⋯ + (m − 1) k denote a power sum. In 2011 Bernd Kellner formulated the conjecture that for m ≥ 4 the ratio S k (m + 1)∕S k (m) of two consecutive power sums is never an
On a Congruence Modulo n 3 Involving Two Consecutive Sums of Powers
• Mathematics
• 2014
For various positive integers k, the sums of kth powers of the first n positive integers, Sk(n) := 1 k +2 k +···+n k , are some of the most popular sums in all of mathematics. In this note we prove a
A Top Hat for Moser's Four Mathemagical Rabbits
It is shown here that Moser's result can be derived from a von Staudt-Clausen type theorem and the mathematical arguments used in the proofs were already available during the lifetime of Lagrange.
Neverending Fractions: An Introduction to Continued Fractions
• Mathematics
• 2014
Preface 1. Some preliminaries from number theory 2. Continued fractions, as they are 3. Metric theory of continued fractions 4. Quadratic irrationals through a magnifier 5. Hyperelliptic curves and
List of Publications of
According to multivariate regression analysis, systolic and diastolic blood pressure was significantly associated with weight, BMI and waist circumference, and support the hypothesis that BMI is a significant predictor of blood pressure in adolescent age groups.